GNU Octave

A high-level interactive language for numerical computations
Edition 3 for Octave version 3.6.2
February 2011

Free Your Numbers

John W. Eaton
David Bateman
Sgren Hauberg

Copyright © 1996, 1997, 1999, 2000, 2001, 2002, 2005, 2006, 2007, 2011 John W. Eaton.

This is the third edition of the Octave documentation, and is consistent with version 3.6.2
of Octave.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

Portions of this document have been adapted from the gawk, readline, gcc, and C library
manuals, published by the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301-1307, USA.

Table of Contents

Preface 1
Acknowledgements 1
How You Can Contribute to Octaveo i, 4
Distribution.)

1 A Brief Introduction to Octave................ 7
1.1 Running Octave.o 7
1.2 Simple Examples. ... 7

1.2.1 Elementary Calculations.............., 7
1.2.2 Creating a Matrix ... 8
1.2.3 Matrix Arithmetic........ ... i 8
1.2.4 Solving Systems of Linear Equations....................... 8
1.2.5 Integrating Differential Equations.......................... 9
1.2.6 Producing Graphical Outputoiat. 10
1.2.7 Editing What You Have Typed..............., 10
1.2.8 Help and Documentation................................. 10
1.3 Conventions.t 11
1.3.1 Fomnts .o 11
1.3.2 Evaluation Notation............. o i, 11
1.3.3 Printing Notation o i i 11
1.3.4 Error MesSages.ouuuutiint i 12
1.3.5 Format of Descriptions, 12
1.3.5.1 A Sample Function Description...................... 12
1.3.5.2 A Sample Command Description 13
1.3.5.3 A Sample Variable Description 13

2 Getting Started............... ...l 15

2.1 Invoking Octave from the Command Line 15
2.1.1 Command Line Options............ooiiiiiiiiiin.. 15
2.1.2 Startup Files.o 18

2.2 Quitting Octave. ..o 19

2.3 Commands for Getting Help........... 19

2.4 Command Line Editing o i 23
2.4.1 Cursor Motiono 24
2.4.2 Killing and Yanking.............ooiiiiiiiiiiiii... 24
2.4.3 Commands For Changing Text 25
2.4.4 Letting Readline Type For You........................ ... 25
2.4.5 Commands For Manipulating The History 26
2.4.6 Customizing readlineccoviuiieeiiiieeannnnn.. 29
2.4.7 Customizing the Prompt 29
2.4.8 Diary and Echo Commands 31

2.5 How Octave Reports Errors...................... 32

ii

2.6 Executable Octave Programs................. ..., 33
2.7 Comments in Octave Programs............. 34
2.7.1 Single Line Comments.coouiiiiiiiiiiin .. 34
2.7.2 Block Comments..........c.oouuiiiiiiiiiiiiiiiiiiean 34
2.7.3 Comments and the Help System.......................... 35
Data Types ... 37
3.1 Built-in Data Types..... .o 37
3.1.1 Numeric Objectsouiiii 39
3.1.2 Missing Data. ... 40
3.1.3 String Objects ...t 40
3.1.4 Data Structure Objects........ ..., 40
3.1.5 Cell Array ObJectso 40
3.2 User-defined Data Types........cooiiiiiiiiiiiiiiiii .. 41
3.3 ODbjJect SIzZes ...ttt 41
Numeric Data Types.......................... 45
A1 MabTiCeS . oo 46
4.1.1 Empty Matrices. ... 49
4.2 RANEES ..ot 50
4.3 Single Precision Data Types.........ccoiiiiiiiiii i 51
4.4 Integer Data Types ... 52
4.4.1 Integer Arithmetic i 53
4.5 Bit Manipulations........... ... 54
4.6 Logical Values 57
4.7 Promotion and Demotion of Data Types....................... 58
4.8 Predicates for Numeric Objects......... ...t 58
Strings. ... 63
5.1 Escape Sequences in String Constants......................... 63
5.2 Character ATTAYS ... o.vttn et 64
5.3 Creating Strings ..o 65
5.3.1 Concatenating Strings............ccooiiiiiiiiiiiiiia... 65
5.3.2 Conversion of Numerical Data to Strings.................. 69
5.4 Comparing SETringsouueiitn e 70
5.5 Manipulating Strings. ... 72
5.6 String CONVErSIONSttt 82

5.7 Character Class Functions., 87

GNU Octave

6 Data Containers............................... 91
6.1 SEIUCTUTES . oot 91
6.1.1 Basic Usage and Examples, 91
6.1.2 Structure ATTaysouueiiiii 94
6.1.3 Creating Structuresc.viiiiiieiiiinennnnn... 96
6.1.4 Manipulating Structures........... i 98
6.1.5 Processing Data in Structures........................... 101
6.2 Cell ATTays .. ovoe it 102
6.2.1 Basic Usage of Cell Arrays ..., 102
6.2.2 Creating Cell Array ..., 103
6.2.3 Indexing Cell Arrays.......c.coiuiiiiiiiiiiiiinia.. 106
6.2.4 Cell Arrays of Strings ... 108
6.2.5 Processing Data in Cell Arrays.......................... 109
6.3 Comma Separated Lists..............ooiiiiiiiii .. 110
6.3.1 Comma Separated Lists Generated from Cell Arrays..... 110
6.3.2 Comma Separated Lists Generated from Structure Arrays
... 111
Variables............ 113
7.1 Global Variables i i 114
7.2 Persistent Variables.......... ... 116
7.3 Status of Variables......... 117
Expressions................ 123
8.1 Index EXPressions...........oueeiiiiiiniiiiiiiannn.. 123
8.1.1 Advanced Indexing...............c i 124
8.2 Calling Functions ... 127
8.2.1 Callby Value..... ..o 127
8.2.2 Recursion......... ... 128
8.3 Arithmetic Operators........ ...t 129
8.4 Comparison Operatorsccoouuiiiiiiiinniieennn.. 132
8.5 Boolean Expressionso 133
8.5.1 Element-by-element Boolean Operators.................. 133
8.5.2 Short-circuit Boolean Operators......................... 135
8.6 Assignment EXpressions.............cooiiiiiiiiiiiiiii. 137
8.7 Increment Operators..............coiiiiiiiiiiiiiieann.. 139
8.8 Operator Precedence.......... ..., 139
Evaluation L. 141
9.1 Calling a Function by its Name 141

9.2 Evaluation in a Different Context 143

iii

iv

10 Statements, 145
10.1 The if Statement i 145
10.2 The switch Statement.............c.oooiiiiiiiiiiiiii .. 147

10.2.1 Notes for the C Programmer 148
10.3 The while Statement oiiiiiiiiiieeiiiea . 149
10.4 The do-until Statementt .. 150
10.5 The for Statemento 150

10.5.1 Looping Over Structure Elements 151
10.6 The break Statement........... ..., 152
10.7 The continue Statementt .. 153
10.8 The unwind_protect Statement 154
10.9 The try Statement 154
10.10 Continuation Lines i i 155

11 Functions and Scripts 157
11.1 Defining Functions.o, 157
11.2 Multiple Return Values, 159
11.3 Variable-length Argument Lists........... 163
11.4 TIgnoring Arguments.ottt i, 164
11.5 Variable-length Return Listso ... 165
11.6 Returning from a Function.............. 166
11.7 Default Arguments ... 166
11.8 Function Fileso 167

11.8.1 Manipulating the Load Path 170

11.8.2 Subfunctions......... o i 172

11.8.3 Private Functions......... i 172

11.8.4 Overloading and Autoloading 173

11.8.5 Function Locking 173

11.8.6 Function Precedenceo L. 175
11.9 Script Files . ..o 175
11.10 Function Handles, Inline Functions, and Anonymous Functions

.. 177

11.10.1 Function Handles oot 177

11.10.2 Anonymous Functions, 178

11.10.3 Inline Functions o i, 178
1111 Commands . ..ottt 179
11.12 Organization of Functions Distributed with Octave......... 179

12 Errors and Warnings 181

12.1 Handling Errors ... 181
12.1.1 Raising Errors ... 181
12.1.2 Catching Errors....... ... 184
12.1.3 Recovering From Errors.......... 186

12.2 Handling Warnings ..., 186
12.2.1 Issuing Warnings.ccoeeeeemiiiiiiieeneeeeen... 186

12.2.2 Enabling and Disabling Warnings 188

GNU Octave

13

14

15

Debugging.............. 193
13.1 Entering Debug Mode 193
13.2 Leaving Debug Mode ... 194
13.3 Breakpoints ... e 194
13.4 Debug Mode. 196
13.5 Call Stack . ..o 197
13.6 Profiling.o 198
13.7 Profiler Example........ ..o i 199

Input and Output........................... 203
14.1 Basic Input and Output ... 203

14.1.1 Terminal OQutpub...... ... 203

14.1.1.1 Paging Screen OQutput........... ..., 206
14.1.2 Terminal Input i 208
14.1.3 Simple File [/O ... 209

14.1.3.1 Saving Data on Unexpected Exits................. 216

14.2 C-Style I/O Functions ..., 218

14.2.1 Opening and Closing Files, 219

14.2.2 Simple Output ... 220

14.2.3 Line-Oriented Input.................. i i 221

14.2.4 Formatted Outpubt ..., 222

14.2.5 Output Conversion for Matrices........................ 223

14.2.6 Output Conversion Syntax, 223

14.2.7 Table of Output Conversions.....................ooo... 224

14.2.8 Integer Conversionsc.ooueiiiiiiieniineennnn.. 225

14.2.9 Floating-Point Conversions...................cooooon... 225

14.2.10 Other Output Conversionsc.coovvean... 226

14.2.11 Formatted Input........ ... i 227

14.2.12 Input Conversion Syntax.............cooviiuieeinn... 228

14.2.13 Table of Input Conversions..............c.covvureeennn.. 229

14.2.14 Numeric Input Conversionscooo... 230

14.2.15 String Input Conversions.......... ..o, 230

14.2.16 Binary I/Oo 230

14.2.17 Temporary Files.........co i i 233

14.2.18 End of File and Errors..............o .. 234

14.2.19 File Positioning......... ... o i 235

Plotting.............., 237
15.1 Introduction to Plotting o i il 237
15.2 High-Level Plottingco i, 237

15.2.1 Two-Dimensional Plots 237

15.2.1.1 Axis Configuration........... ..., 256

15.2.1.2 Two-dimensional Function Plotting................ 258

15.2.1.3 Two-dimensional Geometric Shapes 260
15.2.2 Three-Dimensional Plots.............. 261

15.2.2.1 Aspect Ratio........... ..o 272

15.2.2.2 Three-dimensional Function Plotting 273

GNU Octave

15.2.2.3 Three-dimensional Geometric Shapes.............. 275
15.2.3 Plot Annotations ... 276
15.2.4 Multiple Plots on One Page 280
15.2.5 Multiple Plot Windows, 280
15.2.6 Use of axis, line, and patch functions 281
15.2.7 Manipulation of plot windows.......................... 282
15.2.8 Use of the interpreter Property 284
15.2.9 Printing and Saving Plots........... 287
15.2.10 Interacting with Plots..........o ... 291
15.2.11 Test Plotting Functionso ... 292

15.3 Graphics Data Structures............ ... i, 293
15.3.1 Introduction to Graphics Structures.................... 293
15.3.2 Graphics Objects ... 294

15.3.2.1 Handle Functions oo .. 295
15.3.3 Graphics Object Properties 297

15.3.3.1 Root Figure Properties............................ 297

15.3.3.2 Figure Properties i 298

15.3.3.3 Axes Properties...........cooiiiiiiiiiiiii., 301

15.3.3.4 Line Propertiescoo i i, 305

15.3.3.5 Text Properties, 307

15.3.3.6 Image Properties............ ... i i 308

15.3.3.7 Patch Properties...............o o L 309

15.3.3.8 Surface Properties............ol 311
15.3.4 Searching Properties.............cooiiiiiiiiiiii.. 313
15.3.5 Managing Default Properties...................... ... 314

15.4 Advanced Plotting....... ... 315
1541 ColOrS . oot 315
15.4.2 Line Styles. ..o 315
15.4.3 Marker Styles. ... 315
15.4.4 Callbackso 316
15.4.5 Application-defined Data............................... 317
15.4.6 ODbject GIroUupPS . .. «vovntet et 317

15.4.6.1 Data Sources in Object Groups.................... 321

15.4.6.2 Area Series........ ..o 321

15.4.6.3 Bar Series.uuiiii 322

15.4.6.4 Contour Groups.oovirieeeniieeniineann.. 323

15.4.6.5 Error Bar Series. ... 324

15.4.6.6 Line Series.........oouiuiiiiiii i 325

15.4.6.7 Quiver Groupouvutitiiiii i 325

15.4.6.8 Scatter Group............ooiiiiiiiii. 326

15.4.6.9 Stair Groupottt 327

15.4.6.10 Stem Seriesc.oviiiiiiiiii i 327

15.4.6.11 Surface Group ..., 328
15.4.7 Graphics Toolkits......... ... i i 329

15.4.7.1 Customizing Toolkit Behavior..................... 329

16 Matrix Manipulation....................... 331
16.1 Finding Elements and Checking Conditions 331
16.2 Rearranging Matrices. ..., 334
16.3 Special Utility Matrices. ... 343
16.4 Famous Matrices.oouiiiiiii 350

17 Arithmetic................................... 353
17.1 Exponents and Logarithms........... 353
17.2 Complex Arithmetic.......... 355
17.3 Trigonometry 356
17.4 Sums and Products......... ... i 359
17.5 Utility Functions. o i 360
17.6 Special Functions.......... ... i 367
17.7 Rational Approximationscciiiiiiiii. ... 372
17.8 Coordinate Transformations................ 372
17.9 Mathematical Constantscooiiiiiiieiiian... 373

18 Linear Algebra.............................. 377
18.1 Techniques Used for Linear Algebra......................... 377
18.2 Basic Matrix Functions 377
18.3 Matrix Factorizations..........o i i i 383
18.4 Functions of a Matrix. ..o, 392
18.5 Specialized Solvers........ ... 394

19 Vectorization and Faster Code Execution

.. 397

19.1 Basic Vectorization i 397
19.2 Broadcastingcooouiiiiiiii i 399
19.2.1 Broadcasting and Legacy Code......................... 402
19.3 Function Application i 402
19.4 Accumulation........ ... 406
19.5 Miscellaneous Techniques i i 408
19.6 Examples.o 410
20 Nonlinear Equations........................ 411
20,1 SOIVETS .ottt 411
20.2 MINIMIZETS . . oottt e 414

vii

viii

21 Diagonal and Permutation Matrices....... 417

21.1 Creating and Manipulating Diagonal and Permutation Matrices
.. 417
21.1.1 Creating Diagonal Matrices 417
21.1.2 Creating Permutation Matrices......................... 418
21.1.3 Explicit and Implicit Conversions 419
21.2 Linear Algebra with Diagonal and Permutation Matrices 419
21.2.1 Expressions Involving Diagonal Matrices 419
21.2.2 Expressions Involving Permutation Matrices............ 421
21.3 Functions That Are Aware of These Matrices................ 421
21.3.1 Diagonal Matrix Functions................. 421
21.3.2 Permutation Matrix Functions 421
21.4 Some Examples of Usage...........cooiiiiiiiiiiiiiii.. 422
21.5 The Differences in Treatment of Zero Elements.............. 422
22 Sparse Matrices............................. 425
22.1 The Creation and Manipulation of Sparse Matrices.......... 425
22.1.1 Storage of Sparse Matricesoooiiiiiii 425
22.1.2 Creating Sparse Matrices. ..., 426
22.1.3 Finding out Information about Sparse Matrices......... 431
22.1.4 Basic Operators and Functions on Sparse Matrices 434
22.1.4.1 Sparse Functions.............o, 434
22.1.4.2 The Return Types of Operators and Functions. 435
22.1.4.3 Mathematical Considerations...................... 436
22.2 Linear Algebra on Sparse Matrices.................coooi.... 445
22.3 Tterative Techniques applied to sparse matrices.............. 453
22.4 Real Life Example of the use of Sparse Matrices............. 458
23 Numerical Integration...................... 463
23.1 Functions of One Variable................ o ... 463
23.2 Orthogonal Collocationoiiiiiiiiiiinn.. 470
23.3 Functions of Multiple Variables 471
24 Differential Equations 473
24.1 Ordinary Differential Equations.............. 473
24.2 Differential-Algebraic Equations............................. 475
25 Optimization................................ 485
25.1 Linear Programming............c.ccooiiiiiiiiiiieeeeeennn.. 485
25.2 Quadratic Programming, 491
25.3 Nonlinear Programming.......... 493

25.4 Linear Least SQUAreS.couitiiiiiiie ... 495

GNU Octave

26 Statistics............ ... 499
26.1 Descriptive Statistics. ... 499
26.2 Basic Statistical Functions........... oo 504
26.3 Statistical Plots....... ... i 507
26.4 Correlation and Regression Analysis......................... 508
26.5 Distributions 510
26.6 TeStS .o 518
26.7 Random Number Generation................. ... 525

27 Sets ... 533
27.1 Set Operations.uuuite i i 533

28 Polynomial Manipulations 537
28.1 Evaluating Polynomials.............ol 537
28.2 Finding Rootso 538
28.3 Products of Polynomials L 539
28.4 Derivatives / Integrals / Transforms......................... 942
28.5 Polynomial Interpolation............ oL 542
28.6 Miscellaneous Functions. ..., 545

29 Interpolation................................ 547
29.1 One-dimensional Interpolation 547
29.2 Multi-dimensional Interpolation...................... 552

30 Geometry.............iiiiiiii 557
30.1 Delaunay Triangulation........... ... i .. 557

30.1.1 Plotting the Triangulation 559
30.1.2 Identifying Points in Triangulation 560
30.2 Voronoi Diagrams............ccooiiiiiiiiiiiiiiiiiiia. 562
30.3 Convex Hull 566
30.4 Interpolation on Scattered Data............................. 567

31 Signal Processing 569

32 Image Processing 581
32.1 Loading and Saving Images, 581
32.2 Displaying Images ... 584
32.3 Representing Imagescoooiiiiiiiiiiiiii i 585
32.4 Plotting on top of Images ..., 590
32.5 Color Conversionuueeiiie i, 590

33 Audio Processing 591

ix

X
34 Object Oriented Programming 593
34.1 Creating a Classo.uuiiii e 593
34.2 Manipulating Classes ..., 595
34.3 Indexing Objects ... 598
34.3.1 Defining Indexing And Indexed Assignment 599
34.3.2 Indexed Assignment Optimization...................... 602
34.4 Overloading Objectso 603
34.4.1 Function Overloading i it 603
34.4.2 Operator Overloading.........., 605
34.4.3 Precedence of Objects. ..., 606
34.5 Inheritance and Aggregationo, 607
35 GUI Development 613
35.1 I/O Dialogs. . ..oveiiiei e 613
35.2 Progress Bar........... i 614
35.3 GUI Utility Functions. 615
35.4 User-Defined Preferences............. 616
36 System Utilities............................. 619
36.1 Timing Utilities. 619
36.2 Filesystem Utilities ... 629
36.3 File Archiving Utilities. ... 637
36.4 Networking Utilitieso i 638
36.4.1 FTP ODbJectS. . oo 639
36.4.2 URL Manipulation............ ... i, 639
36.5 Controlling Subprocesses. ..., 640
36.6 Process, Group, and User IDs............................... 647
36.7 Environment Variables........... L 648
36.8 Current Working Directory ... 648
36.9 Password Database Functions..................... 649
36.10 Group Database Functions................ 650
36.11 System Information............. i 650
36.12 Hashing Functions......... i i 654
37 Packages............ ... 657
37.1 Installing and Removing Packages........................... 657
37.2 Using Packages ... 660
37.3 Administrating Packages.......... ... i 661
37.4 Creating Packages i i 661
37.4.1 The DESCRIPTION File oot 663
374.2 The INDEX File. ..o 664

37.4.3 PKG_ADD and PKG_DEL Directives.................. 665

GNU Octave

Appendix A Dynamically Linked Functions

... 667
AT Oct-Files. ... 667
A.1.1 Getting Started with Oct-Files................... 667
A.1.2 Matrices and Arrays in Oct-Files 670
A.1.3 Character Strings in Oct-Files 673
A.1.4 Cell Arrays in Oct-Files ..., 674
A.1.5 Structures in Oct-Files........... 675
A.1.6 Sparse Matrices in Oct-Files............... 677
A.1.6.1 The Differences between the Array and Sparse Classes
.. 677
A.1.6.2 Creating Sparse Matrices in Oct-Files.............. 678
A.1.6.3 Using Sparse Matrices in Oct-Files................. 681
A.1.7 Accessing Global Variables in Oct-Files................. 682
A.1.8 Calling Octave Functions from Oct-Files................ 683
A.1.9 Calling External Code from Oct-Files................... 684
A.1.10 Allocating Local Memory in Oct-Files 686
A.1.11 Input Parameter Checking in Oct-Files 687
A.1.12 Exception and Error Handling in Oct-Files............. 688
A.1.13 Documentation and Test of Oct-Files 689
A2 Mex-Files ... 690
A.2.1 Getting Started with Mex-Files......................... 691
A.2.2 Working with Matrices and Arrays in Mex-Files......... 692
A.2.3 Character Strings in Mex-Files............. 694
A.2.4 Cell Arrays with Mex-Files 695
A.2.5 Structures with Mex-Files 696
A.2.6 Sparse Matrices with Mex-Files......................... 698
A.2.7 Calling Other Functions in Mex-Files 701
A.3 Standalone Programs........... i i 702
Appendix B Test and Demo Functions 707
Bl Test Functions ... 707
B.2 Demonstration Functions.............. ... oL 712
Appendix C Tips and Standards 715
C.1 Writing Clean Octave Programsc.ooooiiia... 715
C.2 Tips on Writing Commentscouiiiieiiiieenan... 715
C.3 Conventional Headers for Octave Functions 716

C.4 Tips for Documentation Strings............. 717

xii
Appendix D Contributing Guidelines........ 725
D.1 How to Contributeo 725
D.2 Building the Development Sources........................... 725
D.3 Basics of Generating a Changeset............................ 726
D.4 General Guidelinesooiiiiiiiiiiii i 727
D.5 Octave Sources (m-files) ..., 728
D6 G SOUTCES. .ottt 729
D.7 Other Sources........c.ouiiiii 730
Appendix E Obsolete Functions.............. 731
Appendix F Known Causes of Trouble...... 735
F.1 Actual Bugs We Haven’t Fixed Yet 735
F.2 Reporting Bugs. ... 735
F.2.1 Have You Found a Bug? 735
F.2.2 Where to Report Bugs........... 736
F.2.3 HowtoReport Bugs...........oooiiiiiiiii i, 736
F.2.4 Sending Patches for Octave, 737
F.3 How To Get Help with Octave............................... 738
Appendix G Installing Octave................ 739
G.1 Build Dependencieso 739
G.1.1 Obtaining the Depencies Automatically................. 739
G.1.2 Build Tools.o 739
G.1.3 External Packages........... ... i 740
G.2 Running Configure and Make........... 742
G.3 Compiling Octave with 64-bit Indexing 746
G.4 Installation Problems........... ... o i i 749
Appendix H Emacs Octave Support 753
H.1 Imstalling EOS ... 753
H.2 Using Octave Mode ... 753
H.3 Running Octave from Within Emacs......................... 757
H.4 Using the Emacs Info Reader for Octave..................... 758
Appendix 1 Grammar and Parser 761
L1 KeyWordsooonne i 761
L2 Parser ... 761

Appendix J GNU GENERAL PUBLIC
LICENSE..... ... 763

Concept Index................ 775

Function Index 781

GNU Octave

xiii

Operator Index................................... 795

Preface 1

Preface

Octave was originally intended to be companion software for an undergraduate-level text-
book on chemical reactor design being written by James B. Rawlings of the University of
Wisconsin-Madison and John G. Ekerdt of the University of Texas.

Clearly, Octave is now much more than just another ‘courseware’ package with limited
utility beyond the classroom. Although our initial goals were somewhat vague, we knew
that we wanted to create something that would enable students to solve realistic problems,
and that they could use for many things other than chemical reactor design problems. We
find that most students pick up the basics of Octave quickly, and are using it confidently in
just a few hours.

Although it was originally intended to be used to teach reactor design, it has been
used in several other undergraduate and graduate courses in the Chemical Engineering
Department at the University of Texas, and the math department at the University of
Texas has been using it for teaching differential equations and linear algebra as well. More
recently, Octave has been used as the primary computational tool for teaching Stanford’s
online Machine Learning class (ml-class.org) taught by Andrew Ng. Tens of thousands
of students participated in the course.

If you find Octave useful, please let us know. We are always interested to find out how
Octave is being used.

Virtually everyone thinks that the name Octave has something to do with music, but
it is actually the name of one of John W. Eaton’s former professors who wrote a famous
textbook on chemical reaction engineering, and who was also well known for his ability
to do quick ‘back of the envelope’ calculations. We hope that this software will make it
possible for many people to do more ambitious computations just as easily.

Everyone is encouraged to share this software with others under the terms of the GNU
General Public License (see Appendix J [Copying], page 763). You are also encouraged to
help make Octave more useful by writing and contributing additional functions for it, and
by reporting any problems you may have.

Acknowledgements

Many people have contributed to Octave’s development. The following people have helped
code parts of Octave or aided in various other ways (listed alphabetically).

Ben Abbott Andy Adler Giles Anderson
Joel Andersson Muthiah Annamalai Marco Atzeri
Shai Ayal Roger Banks Ben Barrowes

Alexander Barth
Roman Belov

Don Bindner

Paul Boven

Marcus Brinkmann
Marco Caliari

Juan Pablo Carbajal
Larrie Carr

Clinton Chee

David Bateman

Karl Berry

Jakub Bogusz
Richard Bovey

Remy Bruno

Daniel Calvelo
Jean-Francois Cardoso
David Castelow
Albert Chin-A-Young

Heinz Bauschke
David Billinghurst
Moritz Borgmann
John Bradshaw
Ansgar Burchard
John C. Campbell
Joao Cardoso
Vincent Cautaerts
Carsten Clark

ml-class.org

J. D. Cole

Jeff Cunningham
Carlo de Falco
Philippe Defert
Christos Dimitrakakis
Pascal A. Dupuis
Pieter Eendebak
Peter Ekberg
Stephen Fegan
Jose Daniel Munoz Frias
Eduardo Gallestey
Driss Ghaddab
Michael Goffioul
Keith Goodman
Etienne Grossmann
Kai Habel

Jaroslav Hajek
Sren Hauberg
Martin Helm

Yozo Hida

A. Scottedward Hodel
David Hoover
Cyril Humbert
Geoff Jacobsen
Steven G. Johnson
Atsushi Kajita
Lute Kamstra

Joel Keay

Aaron A. King
Geoffrey Knauth
Kacper Kowalik
Oyvind Kristiansen
Tetsuro Kurita

Kai Labusch

Bill Lash

Friedrich Leisch
Benjamin Lindner
Sebastien Loisel
Emil Lucretiu
Jens-Uwe Mager
Orestes Mas
Laurent Mazet
Christoph Mayer
Petr Mikulik

Kai P. Mueller
Carmen Navarrete
Al Niessner

Martin Costabel
Martin Dalecki
Jacob Dawid

Bill Denney

David M. Doolin
John W. Eaton
Paul Eggert

Rolf Fabian

Ramon Garcia Fernandez
Brad Froehle
Walter Gautschi
Nicolo Giorgetti
Glenn Golden
Brian Gough
David Grundberg
Patrick Hcker
Benjamin Hall
Dave Hawthorne
Stefan Hepp

Ryan Hinton
Richard Allan Holcombe
Kurt Hornik
Teemu Ikonen
Mats Jansson
Heikki Junes
Jarkko Kaleva
Fotios Kasolis
Mumit Khan

Arno J. Klaassen
Heine Kolltveit
Daniel Kraft

Piotr Krzyzanowski
Miroslaw Kwasniak
Claude Lacoursiere
Dirk Laurie
Jyh-miin Lin

Ross Lippert

FErik de Castro Lopo
Hoxide Ma

Rob Mahurin
Makoto Matsumoto
G. D. McBain

Jlio Hoffimann Mendes
Stefan Monnier
Hannes Mller

Todd Neal

Rick Niles

GNU Octave

Michael Creel

Jorge Barros de Abreu
Thomas D. Dean
Fabian Deutsch
Carn Draug

Dirk Eddelbuettel
Stephen Eglen
Gunnar Farnebck
Torsten Finke
Castor Fu

Klaus Gebhardt
Michael D. Godfrey
Tomislav Goles
Steffen Groot

Peter Gustafson
William P. Y. Hadisoeseno
Kim Hansen

Daniel Heiserer
Jordi Gutirrez Hermoso
Roman Hodek

Tom Holroyd
Christopher Hulbert
Alan W. Irwin

Cai Jianming
Matthias Jschke
Mohamed Kamoun
Thomas Kasper
Paul Kienzle
Alexander Klein
Ken Kouno
Aravindh Krishnamoorthy
Volker Kuhlmann
Rafael Laboissiere
Walter Landry
Maurice LeBrun
Timo Lindfors
David Livings
Massimo Lorenzin
James Macnicol
Ricardo Marranita
Tatsuro Matsuoka
Alexander Mamonov
Thorsten Meyer
Antoine Moreau
Victor Munoz

Philip Nienhuis
Takuji Nishimura

Preface

Kai Noda

Michael O’Brien
Arno Onken
Gabriele Pannocchia
Primozz Peterlin
Nicholas Piper

Hans Ekkehard Plesser
Ondrej Popp
Konstantinos Poulios
Eric S. Raymond
Lukas Reichlin

Jason Riedy
Matthew W. Roberts
Joe Rothweiler

Ryan Rusaw

Juhani Saastamoinen
Aleksej Saushev
Julian Schnidder
Ludwig Schwardt
Dmitri A. Sergatskov
Andriy Shinkarchuck
John Smith

Peter L. Sondergaard
Christoph Spiel
Brett Stewart

Judd Storrs

John Swensen
Matthew Tenny

Kris Thielemans
Thomas Treichl
Utkarsh Upadhyay
James R. Van Zandt
Thomas Walter
Thomas Weber
Andreas Weingessel
David Wells

Michael Zeising

Special thanks to the following people and organizations for supporting the development

of Octave:

e The United States Department of Energy, through grant number DE-FG02-04ER25635.
e Ashok Krishnamurthy, David Hudak, Juan Carlos Chaves, and Stanley C. Ahalt of the

Eric Norum

Peter O’Gorman
Luis F. Ortiz
Sylvain Pelissier
Jim Peterson

Elias Pipping

Tom Poage

Jef Poskanzer
Jarno Rajahalme
Balint Reczey
Michael Reifenberger
E. Joshua Rigler
Andrew Ross
Kevin Ruland

Olli Saarela

Radek Salac

Alois Schlgl

Nicol N. Schraudolph
Thomas L. Scofield
Vanya Sergeev
Robert T. Short
Julius Smith

Joerg Specht
Richard Stallman
Doug Stewart
Thomas Stuart
Daisuke Takago
Georg Thimm
Olaf Till

Karsten Trulsen
Stefan van der Walt
Gregory Vanuxem
Andreas Weber
Rik Wehbring
Martin Weiser
Fook Fah Yap
Federico Zenith

Ohio Supercomputer Center.

e The National Science Foundation, through grant numbers CTS-0105360, CTS-9708497,

CTS-9311420, CTS-8957123, and CNS-0540147.

e The industrial members of the Texas-Wisconsin Modeling and Control Consortium

(TWMCC).

Krzesimir Nowak
Thorsten Ohl

Scott Pakin

Per Persson

Danilo Piazzalunga
Robert Platt

Orion Poplawski
Francesco Potort
James B. Rawlings
Joshua Redstone
Anthony Richardson
Petter Risholm
Mark van Rossum
Kristian Rumberg
Toni Saarela

Ben Sapp

Michel D. Schmid
Sebastian Schubert
Daniel J. Sebald
Baylis Shanks
Joseph P. Skudlarek
Shan G. Smith
Quentin H. Spencer
Russell Standish
Jonathan Stickel
Ivan Sutoris

Ariel Tankus
Duncan Temple Lang
Christophe Tournery
Frederick Umminger
Peter Van Wieren
Ivana Varekova

Olaf Weber

Bob Weigel

Michael Weitzel
Sean Young

Alex Zvoleff

http://www.che.utexas.edu/twmcc

4 GNU Octave

e The Paul A. Elfers Endowed Chair in Chemical Engineering at the University of
Wisconsin-Madison.

e Digital Equipment Corporation, for an equipment grant as part of their External Re-
search Program.

e Sun Microsystems, Inc., for an Academic Equipment grant.

e International Business Machines, Inc., for providing equipment as part of a grant to
the University of Texas College of Engineering.

e Texaco Chemical Company, for providing funding to continue the development of this
software.

e The University of Texas College of Engineering, for providing a Challenge for Excellence
Research Supplement, and for providing an Academic Development Funds grant.

e The State of Texas, for providing funding through the Texas Advanced Technology
Program under Grant No. 003658-078.

e Noel Bell, Senior Engineer, Texaco Chemical Company, Austin Texas.

e John A. Turner, Group Leader, Continuum Dynamics (CCS-2), Los Alamos National
Laboratory, for registering the octave.org domain name.

e James B. Rawlings, Professor, University of Wisconsin-Madison, Department of Chem-
ical and Biological Engineering.

e Richard Stallman, for writing GNU.

This project would not have been possible without the GNU software used in and to
produce Octave.

How You Can Contribute to Octave

There are a number of ways that you can contribute to help make Octave a better system.
Perhaps the most important way to contribute is to write high-quality code for solving
new problems, and to make your code freely available for others to use. See Appendix D
[Contributing Guidelines], page 725, for detailed information on contributing new code.

If you find Octave useful, consider providing additional funding to continue its develop-
ment. Even a modest amount of additional funding could make a significant difference in
the amount of time that is available for development and support.

Donations supporting Octave development may be made on the web at
https://my.fsf.org/donate/working-together/octave. These donations also help to
support the Free Software Foundation

If you’d prefer to pay by check or money order, you can do so by sending a check to the
FSF at the following address:

Free Software Foundation

51 Franklin Street, Suite 500
Boston, MA 02110-1335
USA

If you pay by check, please be sure to write “GNU Octave” in the memo field of your check.

If you cannot provide funding or contribute code, you can still help make Octave better
and more reliable by reporting any bugs you find and by offering suggestions for ways to

octave.org
https://my.fsf.org/donate/working-together/octave

Preface 5

improve Octave. See Appendix F [Trouble], page 735, for tips on how to write useful bug
reports.

Distribution

Octave is free software. This means that everyone is free to use it and free to redistribute
it on certain conditions. Octave is not, however, in the public domain. It is copyrighted
and there are restrictions on its distribution, but the restrictions are designed to ensure
that others will have the same freedom to use and redistribute Octave that you have. The
precise conditions can be found in the GNU General Public License that comes with Octave
and that also appears in Appendix J [Copying], page 763.

To download a copy of Octave, please visit http://www.octave.org/download.html.

http://www.octave.org/download.html

Chapter 1: A Brief Introduction to Octave 7

1 A Brief Introduction to Octave

GNU Octave is a high-level language, primarily intended for numerical computations. It
provides a convenient interactive command line interface for solving linear and nonlinear
problems numerically, and for performing other numerical experiments. It may also be used
as a batch-oriented language for data processing.

GNU Octave is freely redistributable software. You may redistribute it and/or modify
it under the terms of the GNU General Public License as published by the Free Software
Foundation. The GPL is included in this manual in Appendix J [Copying], page 763.

This manual provides comprehensive documentation on how to install, run, use, and
extend GNU Octave. Additional chapters describe how to report bugs and help contribute
code.

This document corresponds to Octave version 3.6.2.

1.1 Running Octave

On most systems, Octave is started with the shell command ‘octave’. Octave displays an
initial message and then a prompt indicating it is ready to accept input. You can begin
typing Octave commands immediately afterward.

If you get into trouble, you can usually interrupt Octave by typing Control-C (written
C-c for short). C-c gets its name from the fact that you type it by holding down CTRL
and then pressing C. Doing this will normally return you to Octave’s prompt.

To exit Octave, type quit, or exit at the Octave prompt.

On systems that support job control, you can suspend Octave by sending it a SIGTSTP
signal, usually by typing C-z.

1.2 Simple Examples
The following chapters describe all of Octave’s features in detail, but before doing that, it
might be helpful to give a sampling of some of its capabilities.

If you are new to Octave, I recommend that you try these examples to begin learning
Octave by using it. Lines marked like so, ‘octave:13>’, are lines you type, ending each
with a carriage return. Octave will respond with an answer, or by displaying a graph.

1.2.1 Elementary Calculations

Octave can easily be used for basic numerical calculations. Octave knows about arithmetic
operations (+,-,%,/), exponentiation (~), natural logarithms/exponents (log, exp), and the
trigonometric functions (sin, cos, ...). Moreover, Octave calculations work on real or
imaginary numbers (i,j). In addition, some mathematical constants such as the base of
the natural logarithm (e) and the ratio of a circle’s circumference to its diameter (pi) are
pre-defined.

For example, to verify Euler’s Identity,

eZ7T — _1

type the following which will evaluate to -1 within the tolerance of the calculation.

octave:1> exp(i*pi)

8 GNU Octave

1.2.2 Creating a Matrix

Vectors and matrices are the basic building blocks for numerical analysis. To create a new
matrix and store it in a variable so that you can refer to it later, type the command

octave:1> A =[1, 1, 2; 3, 5, 8; 13, 21, 34]

Octave will respond by printing the matrix in neatly aligned columns. Octave uses a comma
or space to separate entries in a row, and a semicolon or carriage return to separate one row
from the next. Ending a command with a semicolon tells Octave not to print the result of
the command. For example,

octave:2> B = rand (3, 2);

will create a 3 row, 2 column matrix with each element set to a random value between zero
and one.

To display the value of a variable, simply type the name of the variable at the prompt.
For example, to display the value stored in the matrix B, type the command

octave:3> B

1.2.3 Matrix Arithmetic

Octave has a convenient operator notation for performing matrix arithmetic. For example,
to multiply the matrix A by a scalar value, type the command

octave:4> 2 x A

To multiply the two matrices A and B, type the command
octave:5> A * B

and to form the matrix product ATA, type the command

octave:6> A’ * A

1.2.4 Solving Systems of Linear Equations

Systems of linear equations are ubiquitous in numerical analysis. To solve the set of linear
equations Ax = b, use the left division operator, ‘\’:

x=A\Db

This is conceptually equivalent to A~'b, but avoids computing the inverse of a matrix
directly.

If the coefficient matrix is singular, Octave will print a warning message and compute a
minimum norm solution.

A simple example comes from chemistry and the need to obtain balanced chemical
equations. Consider the burning of hydrogen and oxygen to produce water.

H2 + Og — HQO
The equation above is not accurate. The Law of Conservation of Mass requires that the num-

ber of molecules of each type balance on the left- and right-hand sides of the equation. Writ-
ing the variable overall reaction with individual equations for hydrogen and oxygen one finds:

Chapter 1: A Brief Introduction to Octave 9

l‘ng + 33202 — HQO
H: 2x,40x, — 2
O: 0x1+2x,—1

The solution in Octave is found in just three steps.

octave:1> A = [2, 0; 0, 2 1;
octave:2> b = [2; 1 1;
octave:3> x = A\ b

1.2.5 Integrating Differential Equations

Octave has built-in functions for solving nonlinear differential equations of the form

%:f(x,t), x(t=ty) = xo

For Octave to integrate equations of this form, you must first provide a definition of the
function f(x,t). This is straightforward, and may be accomplished by entering the function
body directly on the command line. For example, the following commands define the right-
hand side function for an interesting pair of nonlinear differential equations. Note that
while you are entering a function, Octave responds with a different prompt, to indicate that
it is waiting for you to complete your input.

octave:1> function xdot = f (x, t)

>

> r = 0.25;

> k =1.4;

> a 1.5;

> b 0.16;

> ¢ =0.9;

> d = 0.8;

>

> xdot(1l) = r*x(1)*(1 - x(1)/k) - a*xx(1)*x(2)/(1 + b*x(1));
> xdot(2) = cxa*x(1)*x(2)/(1 + b*x(1)) - d*xx(2);
>

> endfunction

Given the initial condition
octave:2> x0 = [1; 2];

and the set of output times as a column vector (note that the first output time corresponds
to the initial condition given above)

octave:3> t = linspace (0, 50, 200)’;
it is easy to integrate the set of differential equations:
octave:4> x = lsode ("f", x0, t);

The function 1sode uses the Livermore Solver for Ordinary Differential Equations, described
in A. C. Hindmarsh, ODEPACK, a Systematized Collection of ODE Solvers, in: Scientific
Computing, R. S. Stepleman et al. (Eds.), North-Holland, Amsterdam, 1983, pages 55-64.

10 GNU Octave

1.2.6 Producing Graphical Output
To display the solution of the previous example graphically, use the command
octave:1> plot (t, x)

If you are using a graphical user interface, Octave will automatically create a separate
window to display the plot.

To save a plot once it has been displayed on the screen, use the print command. For
example,

print -deps foo.eps
will create a file called ‘foo.eps’ that contains a rendering of the current plot in Encapsu-
lated PostScript format. The command

help print

explains more options for the print command and provides a list of additional output file
formats.

1.2.7 Editing What You Have Typed

At the Octave prompt, you can recall, edit, and reissue previous commands using Emacs-
or vi-style editing commands. The default keybindings use Emacs-style commands. For
example, to recall the previous command, press Control-p (written C-p for short). Doing
this will normally bring back the previous line of input. C-n will bring up the next line of
input, C-b will move the cursor backward on the line, C-f will move the cursor forward on
the line, etc.

A complete description of the command line editing capability is given in this manual
in Section 2.4 [Command Line Editing], page 23.

1.2.8 Help and Documentation

Octave has an extensive help facility. The same documentation that is available in printed
form is also available from the Octave prompt, because both forms of the documentation
are created from the same input file.

In order to get good help you first need to know the name of the command that you want
to use. This name of the function may not always be obvious, but a good place to start is to
type help --1ist. This will show you all the operators, keywords, built-in functions, and
loadable functions available in the current session of Octave. An alternative is to search
the documentation using the lookfor function. This function is described in Section 2.3
[Getting Help], page 19.

Once you know the name of the function you wish to use, you can get more help on the
function by simply including the name as an argument to help. For example,

help plot
will display the help text for the plot function.

Octave sends output that is too long to fit on one screen through a pager like less or
more. Type a RET to advance one line, a SPC to advance one page, and Q to exit the
pager.

The part of Octave’s help facility that allows you to read the complete text of the printed
manual from within Octave normally uses a separate program called Info. When you invoke

Chapter 1: A Brief Introduction to Octave 11

Info you will be put into a menu driven program that contains the entire Octave manual.
Help for using Info is provided in this manual in Section 2.3 [Getting Help|, page 19.

1.3 Conventions

This section explains the notational conventions that are used in this manual. You may
want to skip this section and refer back to it later.

1.3.1 Fonts

Examples of Octave code appear in this font or form: svd (a). Names that represent
variables or function arguments appear in this font or form: first-number. Commands
that you type at the shell prompt appear in this font or form: ‘octave —--no-init-file’.
Commands that you type at the Octave prompt sometimes appear in this font or form: foo
--bar --baz. Specific keys on your keyboard appear in this font or form: ANY.

1.3.2 Evaluation Notation

In the examples in this manual, results from expressions that you evaluate are indicated
with ‘=". For example:
sqrt (2)
= 1.4142

You can read this as “sqrt (2) evaluates to 1.4142”.
In some cases, matrix values that are returned by expressions are displayed like this
(1, 2; 3, 4] == [1, 3; 2, 4]
= [1, 0; 0, 1]
and in other cases, they are displayed like this
eye (3)

in order to clearly show the structure of the result.

Sometimes to help describe one expression, another expression is shown that produces
identical results. The exact equivalence of expressions is indicated with ‘=’. For example:

rot90 ([1, 2; 3, 4], -1)

rot90 ([1, 2; 3, 4], 3)

rot90 ([1, 2; 3, 4], 7)
1.3.3 Printing Notation

Many of the examples in this manual print text when they are evaluated. In this manual
the printed text resulting from an example is indicated by ‘¢ 4’. The value that is returned
by evaluating the expression is displayed with ‘=’ (1 in the next example) and follows on
a separate line.

printf ("foo %s\n", "bar")
- foo bar
=1

12 GNU Octave

1.3.4 Error Messages
Some examples signal errors. This normally displays an error message on your terminal.
Error messages are shown on a line beginning with error:.

fieldnames ([1, 2; 3, 4])
error: fieldnames: wrong type argument ‘matrix’

1.3.5 Format of Descriptions

Functions, commands, and variables are described in this manual in a uniform format. The
first line of a description contains the name of the item followed by its arguments, if any.
The category—function, variable, or whatever—is printed next to the right margin. The
description follows on succeeding lines, sometimes with examples.

1.3.5.1 A Sample Function Description

In a function description, the name of the function being described appears first. It is
followed on the same line by a list of parameters. The names used for the parameters are
also used in the body of the description.

Here is a description of an imaginary function foo:

foo (x) [Function File]
foo (x,y) [Function File]
foo (x,y,...) [Function File]

The function foo subtracts x from y, then adds the remaining arguments to the result.
If y is not supplied, then the number 19 is used by default.
foo (1, [3, 5], 3, 9)
= [14, 16]
foo (5)
= 14
More generally,
foo (w, %X, y, ...)

X - w+y+ ...

Any parameter whose name contains the name of a type (e.g., integer or matrix) is
expected to be of that type. Parameters named object may be of any type. Parameters
with other sorts of names (e.g., new_file) are discussed specifically in the description of
the function. In some sections, features common to parameters of several functions are
described at the beginning.

Functions in Octave may be defined in several different ways. The category name for
functions may include another name that indicates the way that the function is defined.
These additional tags include

Function File
The function described is defined using Octave commands stored in a text file.
See Section 11.8 [Function Files|, page 167.

Built-in Function
The function described is written in a language like C++, C, or Fortran, and is
part of the compiled Octave binary.

Chapter 1: A Brief Introduction to Octave 13

Loadable Function
The function described is written in a language like C++, C, or Fortran. On
systems that support dynamic linking of user-supplied functions, it may be
automatically linked while Octave is running, but only if it is needed. See
Appendix A [Dynamically Linked Functions]|, page 667.

Mapping Function
The function described works element-by-element for matrix and vector argu-
ments.

1.3.5.2 A Sample Command Description

Command descriptions have a format similar to function descriptions, except that the word
‘Function’ is replaced by ‘Command’. Commands are functions that may be called with-
out surrounding their arguments in parentheses. For example, here is the description for
Octave’s cd command:

cd dir [Command]

chdir dir [Command]|
Change the current working directory to dir. For example, cd ~/octave changes the
current working directory to ‘“/octave’. If the directory does not exist, an error
message is printed and the working directory is not changed.

1.3.5.3 A Sample Variable Description

A variable is a name that can hold a value. Although any variable can be set by the
user, built-in variables typically exist specifically so that users can change them to alter the
way Octave behaves (built-in variables are also sometimes called user options). Ordinary
variables and built-in variables are described using a format like that for functions except
that there are no arguments.

Here is a description of the imaginary variable do_what_i_mean_not_what_i_say.

do_what_i_mean_not_what_i_say [Built-in Variable]
If the value of this variable is nonzero, Octave will do what you actually wanted, even
if you have typed a completely different and meaningless list of commands.

Other variable descriptions have the same format, but ‘Built-in Variable’ is replaced by
‘Variable’, for ordinary variables, or ‘Constant’ for symbolic constants whose values cannot
be changed.

Chapter 2: Getting Started 15

2 Getting Started

This chapter explains some of Octave’s basic features, including how to start an Octave ses-
sion, get help at the command prompt, edit the command line, and write Octave programs
that can be executed as commands from your shell.

2.1 Invoking Octave from the Command Line

Normally, Octave is used interactively by running the program ‘octave’ without any ar-
guments. Once started, Octave reads commands from the terminal until you tell it to
exit.

You can also specify the name of a file on the command line, and Octave will read and
execute the commands from the named file and then exit when it is finished.

You can further control how Octave starts by using the command-line options described
in the next section, and Octave itself can remind you of the options available. Type ‘octave
--help’ to display all available options and briefly describe their use (‘octave -h’is a shorter
equivalent).

2.1.1 Command Line Options
Here is a complete list of the command line options that Octave accepts.

--debug

-d Enter parser debugging mode. Using this option will cause Octave’s parser to
print a lot of information about the commands it reads, and is probably only
useful if you are actually trying to debug the parser.

--doc-cache-file filename
Specify the name of the doc cache file to use. The value of filename specified
on the command line will override any value of 0CTAVE_DOC_CACHE_FILE found
in the environment, but not any commands in the system or user startup files
that use the doc_cache_file function.

—--echo-commands
-X Echo commands as they are executed.

--eval code
Evaluate code and exit when finished unless ‘--persist’ is also specified.

--exec-path path
Specify the path to search for programs to run. The value of path specified on
the command line will override any value of OCTAVE_EXEC_PATH found in the
environment, but not any commands in the system or user startup files that set
the built-in variable EXEC_PATH.

--help

-h

-7 Print short help message and exit.

--image-path path
Add path to the head of the search path for images. The value of path specified
on the command line will override any value of OCTAVE_IMAGE_PATH found in

16

GNU Octave

the environment, but not any commands in the system or user startup files that
set the built-in variable IMAGE_PATH.

—-info-file filename

Specify the name of the info file to use. The value of filename specified on
the command line will override any value of OCTAVE_INFO_FILE found in the
environment, but not any commands in the system or user startup files that
use the info_file function.

--info-program program

Specify the name of the info program to use. The value of program specified
on the command line will override any value of OCTAVE_INFO_PROGRAM found
in the environment, but not any commands in the system or user startup files
that use the info_program function.

—--interactive

-i

Force interactive behavior. This can be useful for running Octave via a remote
shell command or inside an Emacs shell buffer. For another way to run Octave
within Emacs, see Appendix H [Emacs Octave Support], page 753.

--line-editing

Force readline use for command-line editing.

--no-history

-H

—--no-init-

Disable recording of command-line history.

file
Don’t read the initialization files ‘~/.octaverc’ and ‘.octaverc’.

--no-init-path

Don’t initialize the search path for function files to include default locations.

--no-line-editing
Disable command-line editing.

-—-no-site-file
Don’t read the site-wide ‘octaverc’ initialization files.

--norc

-f Don’t read any of the system or user initialization files at startup. This is equiv-
alent to using both of the options ‘-—-no-init-file’ and ‘--no-site-file’.

--path path

-p path Add path to the head of the search path for function files. The value of path
specified on the command line will override any value of OCTAVE_PATH found
in the environment, but not any commands in the system or user startup files
that set the internal load path through one of the path functions.

--persist
Go to interactive mode after ‘--eval’ or reading from a file named on the
command line.

-—-silent

--quiet

-q

Don’t print the usual greeting and version message at startup.

Chapter 2: Getting Started 17

-—traditional

--braindead
For compatibility with MATLAB, set initial values for user preferences to the
following values

Psl = II>> n
P82 = nn
allow_noninteger_range_as_index = true
beep_on_error = true
confirm_recursive_rmdir = false
crash_dumps_octave_core = false
default_save_options = "-mat-binary"
do_braindead_shortcircuit_evaluation = true
fixed_point_format = true
history_timestamp_format_string = "%%-- %D %I:%M %p —-%%"
page_screen_output = false
print_empty_dimensions = false
and disable the following warnings

Octave:abbreviated-property-match
Octave:fopen-file-in-path
Octave:function-name-clash
Octave:load-file-in-path

--verbose

-V Turn on verbose output.

--version

-v Print the program version number and exit.

file Execute commands from file. Exit when done unless ‘--persist’ is also speci-

fied.

Octave also includes several functions which return information about the command line,
including the number of arguments and all of the options.

argv () [Built-in Function]
Return the command line arguments passed to Octave. For example, if you invoked
Octave using the command
octave —--no-line-editing --silent
argv would return a cell array of strings with the elements ‘--no-line-editing’ and
‘--silent’.

If you write an executable Octave script, argv will return the list of arguments passed
to the script. See Section 2.6 [Executable Octave Programs|, page 33, for an example
of how to create an executable Octave script.

program_name () [Built-in Function]
Return the last component of the value returned by program_invocation_name.

See also: [program_invocation_name|, page 18.

18 GNU Octave

program_invocation_name () [Built-in Function]
Return the name that was typed at the shell prompt to run Octave.

If executing a script from the command line (e.g., octave foo.m) or using an ex-
ecutable Octave script, the program name is set to the name of the script. See
Section 2.6 [Executable Octave Programs|, page 33, for an example of how to create
an executable Octave script.

See also: [program_name|, page 17.

Here is an example of using these functions to reproduce the command line which invoked
Octave.

printf ("%s", program_name ());

arg_list = argv O;

for i = l:nargin

printf (" %s", arg_list{i});

endfor

printf ("\n");
See Section 6.2.3 [Indexing Cell Arrays|, page 106, for an explanation of how to retrieve
objects from cell arrays, and Section 11.1 [Defining Functions|, page 157, for information
about the variable nargin.

2.1.2 Startup Files

When Octave starts, it looks for commands to execute from the files in the following list.
These files may contain any valid Octave commands, including function definitions.

octave-home/share/octave/site/m/startup/octaverc
where octave-home is the directory in which Octave is installed (the default
is ‘/usr/local’). This file is provided so that changes to the default Octave
environment can be made globally for all users at your site for all versions of
Octave you have installed. Care should be taken when making changes to this
file since all users of Octave at your site will be affected. The default file may
be overridden by the environment variable OCTAVE_SITE_INITFILE.

octave-home /share/octave/version/m/startup/octaverc

where octave-home is the directory in which Octave is installed (the default is
‘/usr/local’), and version is the version number of Octave. This file is pro-
vided so that changes to the default Octave environment can be made glob-
ally for all users of a particular version of Octave. Care should be taken
when making changes to this file since all users of Octave at your site will
be affected. The default file may be overridden by the environment variable
OCTAVE_VERSION_INITFILE.

~/.octaverc
This file is used to make personal changes to the default Octave environment.

.octaverc
This file can be used to make changes to the default Octave environment for
a particular project. Octave searches for this file in the current directory after
it reads ‘7/.octaverc’. Any use of the cd command in the ‘“/.octaverc’ file
will affect the directory where Octave searches for ‘.octaverc’.

Chapter 2: Getting Started 19

If you start Octave in your home directory, commands from the file
‘~/.octaverc’ will only be executed once.

A message will be displayed as each of the startup files is read if you invoke Octave with
the ‘--verbose’ option but without the ‘--silent’ option.

The dump_prefs function is useful for determining what customizations to Octave are
possible and which are in effect.

dump_prefs () [Function File]

dump_prefs (fid) [Function File]
Dump all of the current user preference variables in a format that can be parsed by
Octave later. fid is a file descriptor as returned by fopen. If file is omitted, the listing
is printed to stdout.

2.2 Quitting Octave

exit (status) [Built-in Function]
quit (status) [Built-in Function]
Exit the current Octave session. If the optional integer value status is supplied, pass
that value to the operating system as the Octave’s exit status. The default value is

Z€ro.
atexit (fcn) [Built-in Function]
atexit (fcn, flag) [Built-in Function]

Register a function to be called when Octave exits. For example,

function last_words ()
disp ("Bye bye");

endfunction

atexit ("last_words");

will print the message "Bye bye" when Octave exits.

The additional argument flag will register or unregister fcn from the list of functions
to be called when Octave exits. If flag is true, the function is registered, and if flag
is false, it is unregistered. For example, after registering the function last_words
above,

atexit ("last_words", false);
will remove the function from the list and Octave will not call last_words when it
exits.
Note that atexit only removes the first occurrence of a function from the list, so if a

function was placed in the list multiple times with atexit, it must also be removed
from the list multiple times.

2.3 Commands for Getting Help

The entire text of this manual is available from the Octave prompt via the command doc.
In addition, the documentation for individual user-written functions and variables is also
available via the help command. This section describes the commands used for reading
the manual and the documentation strings for user-supplied functions and variables. See

20 GNU Octave

Section 11.8 [Function Files|, page 167, for more information about how to document the
functions you write.

help name [Command]

help --list [Command]
Display the help text for name. For example, the command help help prints a short
message describing the help command.

Given the single argument --1ist, list all operators, keywords, built-in functions,
and loadable functions available in the current session of Octave.

If invoked without any arguments, help display instructions on how to access help
from the command line.

The help command can give you information about operators, but not the comma
and semicolons that are used as command separators. To get help for those, you must
type help comma or help semicolon.

See also: [doc], page 20, [lookfor], page 20, [which], page 122.

doc function_name [Command]
Display documentation for the function function_name directly from an on-line ver-
sion of the printed manual, using the GNU Info browser. If invoked without any
arguments, the manual is shown from the beginning.

For example, the command doc rand starts the GNU Info browser at the rand node
in the on-line version of the manual.

Once the GNU Info browser is running, help for using it is available using the com-
mand C-h.

See also: [help], page 20.

lookfor str [Command]
lookfor -all str [Command]
[func, helpstring] = lookfor (str) [Function File]

]

[func, helpstring] lookfor (™-all’, str) [Function File
Search for the string str in all functions found in the current function search path.
By default, lookfor searches for str in the first sentence of the help string of each
function found. The entire help text of each function can be searched if the ’-all’
argument is supplied. All searches are case insensitive.

Called with no output arguments, lookfor prints the list of matching functions to the
terminal. Otherwise, the output arguments func and helpstring define the matching
functions and the first sentence of each of their help strings.

The ability of lookfor to correctly identify the first sentence of the help text is depen-
dent on the format of the function’s help. All Octave core functions are correctly for-
matted, but the same can not be guaranteed for external packages and user-supplied
functions. Therefore, the use of the ’-all’ argument may be necessary to find related
functions that are not a part of Octave.

See also: [help], page 20, [doc], page 20, [which], page 122.

To see what is new in the current release of Octave, use the news function.

Chapter 2: Getting Started 21

news (package) [Function File]
Display the current NEWS file for Octave or installed package.

If package is the name of an installed package, display the current NEWS file for that
package.

info () [Function File]
Display contact information for the GNU Octave community.

warranty () [Built-in Function]
Describe the conditions for copying and distributing Octave.

The following functions can be used to change which programs are used for displaying
the documentation, and where the documentation can be found.

val = info_file () [Built-in Function]
old_val = info_file (new_val) [Built-in Function]
info_file (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the name of the Octave info file. The
default value is ‘octave-home/info/octave.info’, in which octave-home is the root
directory of the Octave installation. The default value may be overridden by the en-
vironment variable 0CTAVE_INFO_FILE, or the command line argument ‘~-info-file
NAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_program]|, page 21, [doc], page 20, [help], page 20, [makeinfo_program],

page 21.
val = info_program () [Built-in Function]
old_val = info_program (new_val) [Built-in Function]
info_program (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the name of the info program to run.
The default value is ‘octave-home/libexec/octave/version/exec/arch/info’
in which octave-home is the root directory of the Octave installation, version
is the Octave version number, and arch is the system type (for example,
i686-pc-linux-gnu). The default value may be overridden by the environment
variable OCTAVE_INFO_PROGRAM, or the command line argument ‘--info-program
NAME’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [info_file|, page 21, [doc|, page 20, [help], page 20, [makeinfo_program],
page 21.

val = makeinfo_program () [Built-in Function]
old_val = makeinfo_program (new_val) [Built-in Function]

22 GNU Octave

makeinfo_program (new_val, "local") [Built-in Function]
Query or set the internal variable that specifies the name of the program that Octave
runs to format help text containing Texinfo markup commands. The default value is
makeinfo.

When called from inside a function with the "local" option, the variable is changed

locally for the function and any subroutines it calls. The original variable value is

restored when exiting the function.

See also: [info_file], page 21, [info_program], page 21, [doc], page 20, [help], page 20.
val = doc_cache_file () [Built-in Function]
old_val = doc_cache_file (new_val) [Built-in Function]
doc_cache_file (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the name of the Octave documentation

cache file. A cache file significantly improves the performance of the lookfor com-

mand. The default value is ‘octave-home /share/octave/version/etc/doc-cache’,
in which octave-home is the root directory of the Octave installation, and version is the

Octave version number. The default value may be overridden by the environment vari-

able OCTAVE_DOC_CACHE_FILE, or the command line argument ‘--doc-cache-file

NAME’.

When called from inside a function with the "local" option, the variable is changed

locally for the function and any subroutines it calls. The original variable value is

restored when exiting the function.

See also: [lookfor|, page 20, [info_program]|, page 21, [doc], page 20, [help], page 20,

[makeinfo_program], page 21.
val = suppress_verbose_help_message () [Built-in Function]
old_val = suppress_verbose_help_message (new_val) [Built-in Function]
suppress_verbose_help_message (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave will add additional
help information to the end of the output from the help command and usage messages
for built-in commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

The following functions are principally used internally by Octave for generating the docu-
mentation. They are documented here for completeness and because they may occasionally
be useful for users.

gen_doc_cache (out_file, directory) [Function File]

Generate documentation caches for all functions in a given directory.

A documentation cache is generated for all functions in directory. The resulting cache
is saved in the file out_file. The cache is used to speed up lookfor.

If no directory is given (or it is the empty matrix), a cache for builtin operators, etc.
is generated.

See also: [lookfor|, page 20, [path], page 171.

Chapter 2: Getting Started 23

[text, format] = get_help_text (name) [Loadable Function]
Return the raw help text of function name.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

[text, format] = get_help_text_from_file (fname) [Loadable Function]
Return the raw help text from the file fname.

The raw help text is returned in text and the format in format The format is a string
which is one of "texinfo", "html", or "plain text".

[text, status] = get_first_help_sentence (name) [Function File]
[text, status] = get_first_help_sentence (name, max_len) [Function File]
Return the first sentence of a function’s help text.

The first sentence is defined as the text after the function declaration until either the
first period (".") or the first appearance of two consecutive newlines ("\n\n"). The
text is truncated to a maximum length of max_len, which defaults to 80.

The optional output argument status returns the status reported by makeinfo. If only
one output argument is requested, and status is non-zero, a warning is displayed.

As an example, the first sentence of this help text is

get_first_help_sentence ("get_first_help_sentence")
- ans = Return the first sentence of a function’s help text.

2.4 Command Line Editing

Octave uses the GNU Readline library to provide an extensive set of command-line editing
and history features. Only the most common features are described in this manual. In
addition, all of the editing functions can be bound to different key strokes at the user’s
discretion. This manual assumes no changes from the default Emacs bindings. See the
GNU Readline Library manual for more information on customizing Readline and for a
complete feature list.

To insert printing characters (letters, digits, symbols, etc.), simply type the character.
Octave will insert the character at the cursor and advance the cursor forward.

Many of the command-line editing functions operate using control characters. For ex-
ample, the character Control-a moves the cursor to the beginning of the line. To type C-a,
hold down CTRL and then press A. In the following sections, control characters such as
Control-a are written as C-a.

Another set of command-line editing functions use Meta characters. To type M-u, hold
down the META key and press U. Depending on the keyboard, the META key may be
labeled ALT or even WINDOWS. If your terminal does not have a META key, you can
still type Meta characters using two-character sequences starting with ESC. Thus, to enter
M-u, you would type ESC U. The ESC character sequences are also allowed on terminals
with real Meta keys. In the following sections, Meta characters such as Meta-u are written
as M-u.

24 GNU Octave

2.4.1 Cursor Motion

The following commands allow you to position the cursor.

C-b Move back one character.
C-f Move forward one character.
BACKSPACE
Delete the character to the left of the cursor.
DEL Delete the character underneath the cursor.
Cc-d Delete the character underneath the cursor.
M-f Move forward a word.
M-b Move backward a word.
C-a Move to the start of the line.
C-e Move to the end of the line.
Cc-1 Clear the screen, reprinting the current line at the top.
C—_
c-/ Undo the last action. You can undo all the way back to an empty line.
M-r Undo all changes made to this line. This is like typing the ‘undo’ command

enough times to get back to the beginning.

The above table describes the most basic possible keystrokes that you need in order to
do editing of the input line. On most terminals, you can also use the left and right arrow
keys in place of C-f and C-b to move forward and backward.

Notice how C-f moves forward a character, while M-f moves forward a word. It is a loose
convention that control keystrokes operate on characters while meta keystrokes operate on
words.

The function clc will allow you to clear the screen from within Octave programs.
clc () [Built-in Function]

home () [Built-in Function]
Clear the terminal screen and move the cursor to the upper left corner.

2.4.2 Killing and Yanking

Killing text means to delete the text from the line, but to save it away for later use, usually
by yanking it back into the line. If the description for a command says that it ‘kills’ text,
then you can be sure that you can get the text back in a different (or the same) place later.

Here is the list of commands for killing text.
C-k Kill the text from the current cursor position to the end of the line.

M-d Kill from the cursor to the end of the current word, or if between words, to the
end of the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to
the start of the previous word.

Chapter 2: Getting Started 25

C-w Kill from the cursor to the previous whitespace. This is different than M-DEL
because the word boundaries differ.

And, here is how to yank the text back into the line. Yanking means to copy the
most-recently-killed text from the kill buffer.

C-y Yank the most recently killed text back into the buffer at the cursor.

M-y Rotate the kill-ring, and yank the new top. You can only do this if the prior
command is C-y or M-y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive
kills save all of the killed text together, so that when you yank it back, you get it in one
clean sweep. The kill ring is not line specific; the text that you killed on a previously typed
line is available to be yanked back later, when you are typing another line.

2.4.3 Commands For Changing Text

The following commands can be used for entering characters that would otherwise have a
special meaning (e.g., TAB, C-q, etc.), or for quickly correcting typing mistakes.

C-q

C-v Add the next character that you type to the line verbatim. This is how to insert
things like C-q for example.

M-TAB Insert a tab character.

C-t Drag the character before the cursor forward over the character at the cursor,
also moving the cursor forward. If the cursor is at the end of the line, then
transpose the two characters before it.

M-t Drag the word behind the cursor past the word in front of the cursor moving
the cursor over that word as well.

M-u Uppercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-1 Lowercase the characters following the cursor to the end of the current (or
following) word, moving the cursor to the end of the word.

M-c Uppercase the character following the cursor (or the beginning of the next word

if the cursor is between words), moving the cursor to the end of the word.

2.4.4 Letting Readline Type For You
The following commands allow Octave to complete command and variable names for you.

TAB Attempt to do completion on the text before the cursor. Octave can complete
the names of commands and variables.

M-7 List the possible completions of the text before the cursor.

val = completion_append_char () [Built-in Function]
old_val = completion_append_char (new_val) [Built-in Function]
completion_append_char (new_val, "local") [Built-in Function]

Query or set the internal character variable that is appended to successful command-
line completion attempts. The default value is " " (a single space).

26 GNU Octave

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

completion_matches (hint) [Built-in Function]
Generate possible completions given hint.

This function is provided for the benefit of programs like Emacs which might be
controlling Octave and handling user input. The current command number is not
incremented when this function is called. This is a feature, not a bug.

2.4.5 Commands For Manipulating The History

Octave normally keeps track of the commands you type so that you can recall previous
commands to edit or execute them again. When you exit Octave, the most recent commands
you have typed, up to the number specified by the variable history_size, are saved in a
file. When Octave starts, it loads an initial list of commands from the file named by the
variable history_file.

Here are the commands for simple browsing and searching the history list.

LFD

RET Accept the current line regardless of where the cursor is. If the line is non-
empty, add it to the history list. If the line was a history line, then restore the
history line to its original state.

C-p Move ‘up’ through the history list.

C-n Move ‘down’ through the history list.

M-< Move to the first line in the history.

M-> Move to the end of the input history, i.e., the line you are entering!

C-r Search backward starting at the current line and moving ‘up’ through the his-
tory as necessary. This is an incremental search.

C-s Search forward starting at the current line and moving ‘down’ through the

history as necessary.

On most terminals, you can also use the up and down arrow keys in place of C-p and
C-n to move through the history list.

In addition to the keyboard commands for moving through the history list, Octave
provides three functions for viewing, editing, and re-running chunks of commands from the
history list.

history options [Command]
If invoked with no arguments, history displays a list of commands that you have
executed. Valid options are:

-w file Write the current history to the file file. If the name is omitted, use the
default history file (normally ‘/.octave_hist’).

-r file Read the file file, appending its contents to the current history list. If the
name is omitted, use the default history file (normally ‘~/.octave_hist’).

Chapter 2: Getting Started 27

n Display only the most recent n lines of history.

-q Don’t number the displayed lines of history. This is useful for cutting and
pasting commands using the X Window System.

For example, to display the five most recent commands that you have typed without
displaying line numbers, use the command history -q 5.

edit_history [first] [last] [Command]
If invoked with no arguments, edit_history allows you to edit the history list using
the editor named by the variable EDITOR. The commands to be edited are first copied
to a temporary file. When you exit the editor, Octave executes the commands that
remain in the file. It is often more convenient to use edit_history to define functions
rather than attempting to enter them directly on the command line. By default, the
block of commands is executed as soon as you exit the editor. To avoid executing any
commands, simply delete all the lines from the buffer before exiting the editor.

The edit_history command takes two optional arguments specifying the history
numbers of first and last commands to edit. For example, the command

edit_history 13

extracts all the commands from the 13th through the last in the history list. The
command

edit_history 13 169

only extracts commands 13 through 169. Specifying a larger number for the first
command than the last command reverses the list of commands before placing them
in the buffer to be edited. If both arguments are omitted, the previous command in
the history list is used.

See also: [run_history|, page 27.

run_history [first] [last] [Command]
Similar to edit_history, except that the editor is not invoked, and the commands
are simply executed as they appear in the history list.

See also: [edit_history], page 27.

Octave also allows you customize the details of when, where, and how history is saved.

val = saving_history () [Built-in Function]
old_val = saving_history (new_val) [Built-in Function]
saving_history (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether commands entered on the
command line are saved in the history file.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [history_control], page 28, [history_file], page 28, [history_size|, page 28,
[history_timestamp_format_string], page 28.

28 GNU Octave

val = history_control () [Built-in Function]

old_val = history_control (new_val) [Built-in Function]
Query or set the internal variable that specifies how commands are saved to the
history list. The default value is an empty character string, but may be overridden
by the environment variable OCTAVE_HISTCONTROL.

The value of history_control is a colon-separated list of values controlling how
commands are saved on the history list. If the list of values includes ignorespace,
lines which begin with a space character are not saved in the history list. A value of
ignoredups causes lines matching the previous history entry to not be saved. A value
of ignoreboth is shorthand for ignorespace and ignoredups. A value of erasedups
causes all previous lines matching the current line to be removed from the history list
before that line is saved. Any value not in the above list is ignored. If history_
control is the empty string, all commands are saved on the history list, subject to
the value of saving_history.

See also: [history_file], page 28, [history_size|, page 28, [history_timestamp_format_string] Jj
page 28, [saving_history|, page 27.

val = history_file () [Built-in Function]

old_val = history_file (new_val) [Built-in Function]
Query or set the internal variable that specifies the name of the file used to store
command history. The default value is ‘~/.octave_hist’, but may be overridden by
the environment variable OCTAVE_HISTFILE.

See also: [history_size|, page 28, [saving_history], page 27, [history_timestamp_format_string]]

page 28.
val = history_size () [Built-in Function]
old_val = history_size (new_val) [Built-in Function]

Query or set the internal variable that specifies how many entries to store in the
history file. The default value is 1024, but may be overridden by the environment
variable OCTAVE_HISTSIZE.

See also: [history_file], page 28, [history_timestamp_format_string|, page 28,
[saving_history], page 27.

val = history_timestamp_format_string () [Built-in Function]
old_val = history_timestamp_format_string (new_val) [Built-in Function]
history_timestamp_format_string (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the format string for the comment
line that is written to the history file when Octave exits. The format string is passed
to strftime. The default value is

"# Octave VERSION, %a %b %d %H:%M:%S %Y %Z <USERQHOST>"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [strftime], page 621, [history_file], page 28, [history_size], page 28,
[saving_history], page 27.

Chapter 2: Getting Started 29

val = EDITOR () [Built-in Function]
old_val = EDITOR (new_val) [Built-in Function]
EDITOR (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the editor to use with the edit_
history command. The default value is taken from the environment variable EDITOR
when Octave starts. If the environment variable is not initialized, EDITOR will be set
to "emacs".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [edit_history], page 27.

2.4.6 Customizing readline

Octave uses the GNU Readline library for command-line editing and history features. Read-
line is very flexible and can be modified through a configuration file of commands (See the
GNU Readline library for the exact command syntax). The default configuration file is
normally ‘“/.inputrc’.

Octave provides two commands for initializing Readline and thereby changing the com-
mand line behavior.

read_readline_init_file (file) [Built-in Function]
Read the readline library initialization file file. If file is omitted, read the default
initialization file (normally ‘~/.inputrc’).

See Section “Readline Init File” in GNU Readline Library, for details.

re_read_readline_init_file () [Built-in Function]
Re-read the last readline library initialization file that was read. See Section “Readline
Init File” in GNU Readline Library, for details.

2.4.7 Customizing the Prompt

The following variables are available for customizing the appearance of the command-line
prompts. Octave allows the prompt to be customized by inserting a number of backslash-
escaped special characters that are decoded as follows:

At The time.

A\d’ The date.

“\n’ Begins a new line by printing the equivalent of a carriage return followed by a
line feed.

‘\s’ The name of the program (usually just ‘octave’).

Aw’ The current working directory.

AW The basename of the current working directory.

Au’ The username of the current user.

“\h’ The hostname, up to the first <.’.

30 GNU Octave
\H’ The hostname.
\# The command number of this command, counting from when Octave starts.
A\ The history number of this command. This differs from ‘\#’ by the number of
commands in the history list when Octave starts.
¢’ If the effective UID is 0, a ‘#’, otherwise a ‘$’.
‘\nnn’ The character whose character code in octal is nnn.
AN A backslash.
val = PS1 () [Built-in Function]
old_val = PS1 (new_val) [Built-in Function]
PS1 (new_val, "local") [Built-in Function]
Query or set the primary prompt string. When executing interactively, Octave dis-
plays the primary prompt when it is ready to read a command.
The default value of the primary prompt string is "\s:\#> ". To change it, use a
command like
PS1 ("\\u@\\H> ")
which will result in the prompt ‘boris@kremvax> ’ for the user ‘boris’ logged in
on the host ‘kremvax.kgb.su’. Note that two backslashes are required to enter a
backslash into a double-quoted character string. See Chapter 5 [Strings|, page 63.
You can also use ANSI escape sequences if your terminal supports them. This can be
useful for coloring the prompt. For example,
PS1 ("\\[\\033[01;31m\\]J\\s:\\#> \\[\\033[0m\]")
will give the default Octave prompt a red coloring.
When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.
See also: [PS2], page 30, [PS4], page 31.
val = PS2 () [Built-in Function]
old_val = PS2 (new_val) [Built-in Function]
PS2 (new_val, "local") [Built-in Function]

Query or set the secondary prompt string. The secondary prompt is printed when
Octave is expecting additional input to complete a command. For example, if you are
typing a for loop that spans several lines, Octave will print the secondary prompt at
the beginning of each line after the first. The default value of the secondary prompt
string is "> ".

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [PS1], page 30, [PS4], page 31.

Chapter 2: Getting Started 31

val = PS4 () [Built-in Function]
old_val = PS4 (new_val) [Built-in Function]
PS4 (new_val, "local") [Built-in Function]

Query or set the character string used to prefix output produced when echoing com-
mands is enabled. The default value is "+ ". See Section 2.4.8 [Diary and Echo
Commands]|, page 31, for a description of echoing commands.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [echo], page 31, [echo_executing_commands|, page 31, [PS1], page 30, [PS2],
page 30.

2.4.8 Diary and Echo Commands

Octave’s diary feature allows you to keep a log of all or part of an interactive session by

recording the input you type and the output that Octave produces in a separate file.

diary options [Command]|
Record a list of all commands and the output they produce, mixed together just as
you see them on your terminal. Valid options are:

on Start recording your session in a file called ‘diary’ in your current working
directory.

of f Stop recording your session in the diary file.

file Record your session in the file named file.

With no arguments, diary toggles the current diary state.

Sometimes it is useful to see the commands in a function or script as they are being
evaluated. This can be especially helpful for debugging some kinds of problems.

echo options [Command]|
Control whether commands are displayed as they are executed. Valid options are:

on Enable echoing of commands as they are executed in script files.

of f Disable echoing of commands as they are executed in script files.

on all Enable echoing of commands as they are executed in script files and
functions.

off all Disable echoing of commands as they are executed in script files and
functions.

With no arguments, echo toggles the current echo state.

val = echo_executing_commands () [Built-in Function]
old_val = echo_executing_commands (new_val) [Built-in Function]
echo_executing_commands (new_val, "local") [Built-in Function]

Query or set the internal variable that controls the echo state. It may be the sum of
the following values:

32 GNU Octave

1 Echo commands read from script files.
2 Echo commands from functions.
4 Echo commands read from command line.

More than one state can be active at once. For example, a value of 3 is equivalent to
the command echo on all.

The value of echo_executing_commands may be set by the echo command or the
command line option ‘--echo-commands’.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

2.5 How Octave Reports Errors

Octave reports two kinds of errors for invalid programs.
A parse error occurs if Octave cannot understand something you have typed. For exam-
ple, if you misspell a keyword,
octave:13> function y = f (x) y = x***2; endfunction
Octave will respond immediately with a message like this:

parse error:
syntax error

>>> function y = £ (x) y = x***2; endfunction

For most parse errors, Octave uses a caret (‘*’) to mark the point on the line where it was
unable to make sense of your input. In this case, Octave generated an error message because
the keyword for exponentiation (**) was misspelled. It marked the error at the third ‘*’
because the code leading up to this was correct but the final ‘*’ was not understood.

Another class of error message occurs at evaluation time. These errors are called run-time
errors, or sometimes evaluation errors, because they occur when your program is being run,
or evaluated. For example, if after correcting the mistake in the previous function definition,

you type

octave:13> £ ()
Octave will respond with

error: ‘x’ undefined near line 1 column 24

error: called from:

error: f at line 1, column 22
This error message has several parts, and gives quite a bit of information to help you locate
the source of the error. The messages are generated from the point of the innermost error,
and provide a traceback of enclosing expressions and function calls.

In the example above, the first line indicates that a variable named ‘x’ was found to be

undefined near line 1 and column 24 of some function or expression. For errors occurring
within functions, lines are counted from the beginning of the file containing the function

Chapter 2: Getting Started 33

definition. For errors occurring outside of an enclosing function, the line number indicates
the input line number, which is usually displayed in the primary prompt string.

The second and third lines of the error message indicate that the error occurred within
the function f. If the function £ had been called from within another function, for example,
g, the list of errors would have ended with one more line:

error: g at line 1, column 17

These lists of function calls make it fairly easy to trace the path your program took
before the error occurred, and to correct the error before trying again.

2.6 Executable Octave Programs

Once you have learned Octave, you may want to write self-contained Octave scripts, using
the ‘“#!” script mechanism. You can do this on GNU systems and on many Unix systems'.

Self-contained Octave scripts are useful when you want to write a program which users
can invoke without knowing that the program is written in the Octave language. Octave
scripts are also used for batch processing of data files. Once an algorithm has been developed
and tested in the interactive portion of Octave, it can be committed to an executable script
and used again and again on new data files.

As a trivial example of an executable Octave script, you might create a text file named
‘hello’, containing the following lines:

#! octave-interpreter—-name -qf

a sample Octave program

printf ("Hello, world!\n");
(where octave-interpreter-name should be replaced with the full path and name of your
Octave binary). Note that this will only work if ‘#!” appears at the very beginning of the
file. After making the file executable (with the chmod command on Unix systems), you can
simply type:

hello
at the shell, and the system will arrange to run Octave as if you had typed:

octave hello

The line beginning with ‘#!’ lists the full path and filename of an interpreter to be run,
and an optional initial command line argument to pass to that interpreter. The operating
system then runs the interpreter with the given argument and the full argument list of
the executed program. The first argument in the list is the full file name of the Octave
executable. The rest of the argument list will either be options to Octave, or data files, or
both. The ‘-qf’ options are usually specified in stand-alone Octave programs to prevent
them from printing the normal startup message, and to keep them from behaving differently
depending on the contents of a particular user’s ‘~/.octaverc’ file. See Section 2.1 [Invoking
Octave from the Command Line], page 15.

Note that some operating systems may place a limit on the number of characters that
are recognized after ‘#!’. Also, the arguments appearing in a ‘#!’ line are parsed differently
by various shells/systems. The majority of them group all the arguments together in one
string and pass it to the interpreter as a single argument. In this case, the following script:

1 The ‘#!” mechanism works on Unix systems derived from Berkeley Unix, System V Release 4, and some
System V Release 3 systems.

34 GNU Octave

#! octave-interpreter—-name -q -f # comment
is equivalent to typing at the command line:
octave "-q -f # comment"

which will produce an error message. Unfortunately, it is not possible for Octave to deter-
mine whether it has been called from the command line or from a ‘#!’ script, so some care
is needed when using the ‘#!” mechanism.

Note that when Octave is started from an executable script, the built-in function argv
returns a cell array containing the command line arguments passed to the executable Octave
script, not the arguments passed to the Octave interpreter on the ‘#!’ line of the script. For
example, the following program will reproduce the command line that was used to execute
the script, not ‘-qf’.

#! /bin/octave -qf
printf ("¥s", program_name ());
arg_list = argv ();
for i = l:nargin

printf (" %s", arg_list{il});
endfor
printf ("\n");

2.7 Comments in Octave Programs

A comment is some text that is included in a program for the sake of human readers, and
which is NOT an executable part of the program. Comments can explain what the program
does, and how it works. Nearly all programming languages have provisions for comments,
because programs are typically hard to understand without them.

2.7.1 Single Line Comments

In the Octave language, a comment starts with either the sharp sign character, ‘#’, or the
percent symbol ‘%’ and continues to the end of the line. Any text following the sharp sign
or percent symbol is ignored by the Octave interpreter and not executed. The following
example shows whole line and partial line comments.

function countdown
Count down for main rocket engines
disp(3);
disp(2);
disp(1);
disp("Blast Off!"); # Rocket leaves pad
endfunction

2.7.2 Block Comments

Entire blocks of code can be commented by enclosing the code between matching ‘#{’ and
‘“#}’ or ‘%{" and ‘%}’ markers. For example,

Chapter 2: Getting Started 35

function quick_countdown
Count down for main rocket engines
disp(3);
#{
disp(2);
disp(1);
#3}
disp("Blast Off!"); # Rocket leaves pad
endfunction

will produce a very quick countdown from '3’ to 'Blast Off’ as the lines "disp(2);" and
"disp(1);" won’t be executed.

The block comment markers must appear alone as the only characters on a line (excepting
whitespace) in order to be parsed correctly.

2.7.3 Comments and the Help System

The help command (see Section 2.3 [Getting Help|, page 19) is able to find the first block
of comments in a function and return those as a documentation string. This means that the
same commands used to get help on built-in functions are available for properly formatted
user-defined functions. For example, after defining the function £ below,

function xdot = f (x, t)

usage: f (x, t)

#

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

r = 0.25;

endfunction
the command help f produces the output
usage: f (x, t)

This function defines the right-hand
side functions for a set of nonlinear
differential equations.

Although it is possible to put comment lines into keyboard-composed, throw-away Oc-
tave programs, it usually isn’t very useful because the purpose of a comment is to help you
or another person understand the program at a later time.

The help parser currently only recognizes single line comments (see Section 2.7.1 [Single
Line Comments], page 34) and not block comments for the initial help text.

Chapter 3: Data Types 37

3 Data Types

All versions of Octave include a number of built-in data types, including real and complex
scalars and matrices, character strings, a data structure type, and an array that can contain
all data types.

It is also possible to define new specialized data types by writing a small amount of C++
code. On some systems, new data types can be loaded dynamically while Octave is running,
S0 it is not necessary to recompile all of Octave just to add a new type. See Appendix A
[Dynamically Linked Functions], page 667, for more information about Octave’s dynamic
linking capabilities. Section 3.2 [User-defined Data Types], page 41 describes what you
must do to define a new data type for Octave.

typeinfo () [Built-in Function]

typeinfo (expr) [Built-in Function]
Return the type of the expression expr, as a string. If expr is omitted, return an cell
array of strings containing all the currently installed data types.

3.1 Built-in Data Types

The standard built-in data types are real and complex scalars and matrices, ranges, char-
acter strings, a data structure type, and cell arrays. Additional built-in data types may
be added in future versions. If you need a specialized data type that is not currently pro-
vided as a built-in type, you are encouraged to write your own user-defined data type and
contribute it for distribution in a future release of Octave.

The data type of a variable can be determined and changed through the use of the
following functions.

class (expr) [Built-in Function]
class (s, id) [Built-in Function]
class (s, id, p, .. .) [Built-in Function]

Return the class of the expression expr or create a class with fields from structure s
and name (string) id. Additional arguments name a list of parent classes from which
the new class is derived.

isa (obj, class) [Function File]
Return true if obj is an object from the class class.

See also: [class]|, page 37, [typeinfo], page 37.

cast (val, type) [Function File]
Convert val to data type type.

See also: [int8], page 52, [uint8|, page 52, [int16], page 52, [uint16], page 52, [int32],
page 52, [uint32], page 52, [int64], page 52, [uint64], page 52, [double], page 45.

typecast (x, class) [Loadable Function]
Return a new array y resulting from interpreting the data of x in memory as data
of the numeric class class. Both the class of x and class must be one of the built-in
numeric classes:

38 GNU Octave

"logical"

""char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uintie"
"uint32"
"uint64"
"double"
"single"

"double complex"
"single complex"

the last two are reserved for class; they indicate that a complex-valued result is
requested. Complex arrays are stored in memory as consecutive pairs of real numbers.
The sizes of integer types are given by their bit counts. Both logical and char are
typically one byte wide; however, this is not guaranteed by C++. If your system is
IEEE conformant, single and double should be 4 bytes and 8 bytes wide, respectively.
"logical" is not allowed for class. If the input is a row vector, the return value is a
row vector, otherwise it is a column vector. If the bit length of x is not divisible by
that of class, an error occurs.

An example of the use of typecast on a little-endian machine is
x = uint16 ([1, 65535]);

typecast (x, ’uint8’)
= [0, 1, 255, 255]

See also: [cast], page 37, [bitunpack], page 39, [bitpack], page 38, [swapbytes], page 38.

swapbytes (x) [Function File]
Swap the byte order on values, converting from little endian to big endian and vice
versa. For example:

swapbytes (uint16 (1:4))
= [256 512 768 1024]

See also: [typecast], page 37, [cast], page 37.
y = bitpack (x, class) [Loadable Function]

Return a new array y resulting from interpreting an array x as raw bit patterns for
data of the numeric class class. class must be one of the built-in numeric classes:

Chapter 3: Data Types 39

"char"

"int8"

"int16"

"int32"

"int64"

"uint8"

"uint16"

"uint32"

"uint64"

"double"

"single"
The number of elements of x should be divisible by the bit length of class. If it is
not, excess bits are discarded. Bits come in increasing order of significance, i.e., x(1)
is bit 0, x(2) is bit 1, etc. The result is a row vector if x is a row vector, otherwise
it is a column vector.

See also: [bitunpack], page 39, [typecast|, page 37.

y = bitunpack (x) [Loadable Function]
Return an array y corresponding to the raw bit patterns of x. x must belong to one
of the built-in numeric classes:

"char"
"int8ll
"int16"
"int32"
"int64"
"uint8"
"uint16"
"uint32"
"uint64"
"double"
"single"
The result is a row vector if x is a row vector; otherwise, it is a column vector.

See also: [bitpack]|, page 38, [typecast|, page 37.

3.1.1 Numeric Objects

Octave’s built-in numeric objects include real, complex, and integer scalars and matrices.
All built-in floating point numeric data is currently stored as double precision numbers.
On systems that use the IEEE floating point format, values in the range of approximately
2.2251 x 1073% t0 1.7977 x 103%® can be stored, and the relative precision is approximately
2.2204 x 1076, The exact values are given by the variables realmin, realmax, and eps,
respectively.

Matrix objects can be of any size, and can be dynamically reshaped and resized. It is
easy to extract individual rows, columns, or submatrices using a variety of powerful indexing
features. See Section 8.1 [Index Expressions|, page 123.

See Chapter 4 [Numeric Data Types]|, page 45, for more information.

40 GNU Octave

3.1.2 Missing Data

It is possible to represent missing data explicitly in Octave using NA (short for “Not Avail-
able”). Missing data can only be represented when data is represented as floating point
numbers. In this case missing data is represented as a special case of the representation of
NaN.

NA [Built-in Function]
NA (n) [Built-in Function]
NA (n, m) [Built-in Function]
NA (n,m k, ...) [Built-in Function]
NA (..., class) [Built-in Function]

Return a scalar, matrix, or N-dimensional array whose elements are all equal to the
special constant used to designate missing values.

Note that NA always compares not equal to NA (NA != NA). To find NA values, use
the isna function.

When called with no arguments, return a scalar with the value ‘NA’. When called
with a single argument, return a square matrix with the dimension specified. When
called with more than one scalar argument the first two arguments are taken as the
number of rows and columns and any further arguments specify additional matrix
dimensions. The optional argument class specifies the return type and may be either
"double" or "single".

See also: [isnal, page 40.

isna (x) [Mapping Function]
Return a logical array which is true where the elements of x are NA (missing) values
and false where they are not. For example:

isna ([13, Inf, NA, NaNJ])
= [0, 0, 1, 01

See also: [isnan], page 332, [isinf], page 332, [isfinite], page 332.
3.1.3 String Objects

A character string in Octave consists of a sequence of characters enclosed in either double-
quote or single-quote marks. Internally, Octave currently stores strings as matrices of
characters. All the indexing operations that work for matrix objects also work for strings.

See Chapter 5 [Strings], page 63, for more information.

3.1.4 Data Structure Objects

Octave’s data structure type can help you to organize related objects of different types.
The current implementation uses an associative array with indices limited to strings, but
the syntax is more like C-style structures.

See Section 6.1 [Structures], page 91, for more information.

3.1.5 Cell Array Objects
A Cell Array in Octave is general array that can hold any number of different data types.

See Section 6.2 [Cell Arrays]|, page 102, for more information.

Chapter 3: Data Types 41

3.2 User-defined Data Types

Someday I hope to expand this to include a complete description of Octave’s mechanism
for managing user-defined data types. Until this feature is documented here, you will have
to make do by reading the code in the ‘ov.h’, ‘ops.h’, and related files from Octave’s ‘src’
directory.

3.3 Object Sizes

The following functions allow you to determine the size of a variable or expression. These
functions are defined for all objects. They return —1 when the operation doesn’t make
sense. For example, Octave’s data structure type doesn’t have rows or columns, so the
rows and columns functions return —1 for structure arguments.

ndims (a) [Built-in Function]
Return the number of dimensions of a. For any array, the result will always be larger
than or equal to 2. Trailing singleton dimensions are not counted.
ndims (ones (4, 1, 2, 1))
= 3

columns (a) [Built-in Function]
Return the number of columns of a.

See also: [rows|, page 41, [size], page 42, [length], page 41, [numel], page 41, [isscalar],
page 60, [isvector], page 59, [ismatrix], page 59.

rows (a) [Built-in Function]
Return the number of rows of a.

See also: [columns]|, page 41, [size], page 42, [length], page 41, [numel], page 41,
[isscalar|, page 60, [isvector], page 59, [ismatrix], page 59.

numel (a) [Built-in Function]

numel (a, idx1, idx2, ...) [Built-in Function]
Return the number of elements in the object a. Optionally, if indices idx1, idx2, . . .
are supplied, return the number of elements that would result from the indexing

a(idx1, idx2, ...)
Note that the indices do not have to be numerical. For example,
a=1;

b = ones (2, 3);

numel (a, b);
will return 6, as this is the number of ways to index with b.
This method is also called when an object appears as lvalue with cs-list indexing, i.e.,
object{...} or object(...).field.

See also: [size], page 42.

length (a) [Built-in Function]
Return the "length" of the object a. For matrix objects, the length is the number
of rows or columns, whichever is greater (this odd definition is used for compatibility
with MATLAB).

42 GNU Octave

size (a) [Built-in Function]
size (a, dim) [Built-in Function]
Return the number of rows and columns of a.
With one input argument and one output argument, the result is returned in a row
vector. If there are multiple output arguments, the number of rows is assigned to the
first, and the number of columns to the second, etc. For example:

size ([1, 2; 3, 4; 5, 6])
= [3, 2]

[nr, nc] = size ([1, 2; 3, 4; 5, 6])
= nr = 3
= nc = 2

If given a second argument, size will return the size of the corresponding dimension.
For example,

size ([1, 2; 3, 4; 5, 6], 2)
= 2

returns the number of columns in the given matrix.
See also: [numel|, page 41.
isempty (a) [Built-in Function]

Return true if a is an empty matrix (any one of its dimensions is zero). Otherwise,
return false.

See also: [isnull], page 42.

isnull (x) [Built-in Function]
Return true if x is a special null matrix, string, or single quoted string. Indexed
assignment with such a value on the right-hand side should delete array elements.

This function should be used when overloading indexed assignment for user-defined
classes instead of isempty, to distinguish the cases:

A(I) = [1 This should delete elements if I is nonempty.

X=1[]; A(I) =X
This should give an error if I is nonempty.

See also: [isempty], page 42, [isindex], page 126.

sizeof (val) [Built-in Function]
Return the size of val in bytes.
See also: [whos|, page 118.

size_equal (a, b, ...) [Built-in Function]

Return true if the dimensions of all arguments agree. Trailing singleton dimensions
are ignored. Called with a single or no argument, size_equal returns true.

See also: [size|, page 42, [numel], page 41.

Chapter 3: Data Types 43

squeeze (x) [Built-in Function]
Remove singleton dimensions from x and return the result. Note that for compatibility
with MATLAB, all objects have a minimum of two dimensions and row vectors are left
unchanged.

Chapter 4: Numeric Data Types 45

4 Numeric Data Types

A numeric constant may be a scalar, a vector, or a matrix, and it may contain complex
values.

The simplest form of a numeric constant, a scalar, is a single number that can be an
integer, a decimal fraction, a number in scientific (exponential) notation, or a complex
number. Note that by default numeric constants are represented within Octave in double-
precision floating point format (complex constants are stored as pairs of double-precision
floating point values). It is however possible to represent real integers as described in
Section 4.4 [Integer Data Types|, page 52. Here are some examples of real-valued numeric
constants, which all have the same value:

105

1.05e+2

1050e-1

To specify complex constants, you can write an expression of the form

3+ 4i

3.0 + 4.01

0.3el + 40e-11i
all of which are equivalent. The letter ‘i’ in the previous example stands for the pure
imaginary constant, defined as v/—1.

For Octave to recognize a value as the imaginary part of a complex constant, a space
must not appear between the number and the ‘i’. If it does, Octave will print an error
message, like this:

octave:13> 3 + 4 i

parse error:
syntax error

>>> 3 + 4 i

You may also use ‘j’, ‘I’, or ‘J’ in place of the ‘i’ above. All four forms are equivalent.

double (x) [Built-in Function]
Convert x to double precision type.

See also: [single|, page 51.

complex (x) [Built-in Function]
complex (re, im) [Built-in Function]
Return a complex result from real arguments. With 1 real argument x, return the
complex result x + 0i. With 2 real arguments, return the complex result re + im.
complex can often be more convenient than expressions such as a + i*b. For example:
complex ([1, 2], [3, 41)
=
1+ 31 2 + 41

See also: [real], page 355, [imag], page 355, [iscomplex], page 59.

46 GNU Octave

4.1 Matrices

It is easy to define a matrix of values in Octave. The size of the matrix is determined
automatically, so it is not necessary to explicitly state the dimensions. The expression

a=[1, 2; 3, 4]
12
13 4

results in the matrix
Elements of a matrix may be arbitrary expressions, provided that the dimensions all
make sense when combining the various pieces. For example, given the above matrix, the
expression
[a, al

produces the matrix

ans =
1 2 1 2
3 4 3 4
but the expression
[a, 1]

produces the error
error: number of rows must match (1 !'= 2) near line 13, column 6
(assuming that this expression was entered as the first thing on line 13, of course).

Inside the square brackets that delimit a matrix expression, Octave looks at the sur-
rounding context to determine whether spaces and newline characters should be converted
into element and row separators, or simply ignored, so an expression like

a=1[12
3 4]
will work. However, some possible sources of confusion remain. For example, in the expres-
sion
[1-11]
the ‘-’ is treated as a binary operator and the result is the scalar 0, but in the expression
[1-1]
the ‘-’ is treated as a unary operator and the result is the vector [1, -1 1. Similarly, the
expression
[sin (pi) 1]
will be parsed as
[sin, (pi)]
and will result in an error since the sin function will be called with no arguments. To get

around this, you must omit the space between sin and the opening parenthesis, or enclose
the expression in a set of parentheses:

[(sin (pi))]

Whitespace surrounding the single quote character (‘’’, used as a transpose operator
and for delimiting character strings) can also cause confusion. Given a = 1, the expression

Chapter 4: Numeric Data Types 47

[1 a’]

results in the single quote character being treated as a transpose operator and the result is
the vector [1, 1], but the expression

[1a’]
produces the error message

parse error:
syntax error

>> [1 a]

because not doing so would cause trouble when parsing the valid expression
[a ’foo’ 1]

For clarity, it is probably best to always use commas and semicolons to separate matrix
elements and rows.

The maximum number of elements in a matrix is fixed when Octave is compiled. The
allowable number can be queried with the function sizemax. Note that other factors, such as
the amount of memory available on your machine, may limit the maximum size of matrices
to something smaller.

sizemax () [Built-in Function]
Return the largest value allowed for the size of an array. If Octave is compiled with
64-bit indexing, the result is of class int64, otherwise it is of class int32. The maximum
array size is slightly smaller than the maximum value allowable for the relevant class
as reported by intmax.

See also: [intmax], page 53.

When you type a matrix or the name of a variable whose value is a matrix, Octave
responds by printing the matrix in with neatly aligned rows and columns. If the rows of
the matrix are too large to fit on the screen, Octave splits the matrix and displays a header
before each section to indicate which columns are being displayed. You can use the following
variables to control the format of the output.

val = output_max_field_width () [Built-in Function]
old_val = output_max_field_width (new_val) [Built-in Function]
output_max_field_width (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the maximum width of a numeric
output field.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 204, [fixed_point_format], page 48, [output_precision],
page 48.

43 GNU Octave

val = output_precision () [Built-in Function]
old_val = output_precision (new_val) [Built-in Function]
output_precision (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies the minimum number of significant
figures to display for numeric output.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 204, [fixed_point_format], page 48, [output_max_field_width],
page 47.

It is possible to achieve a wide range of output styles by using different values of output_
precision and output_max_field_width. Reasonable combinations can be set using the
format function. See Section 14.1 [Basic Input and Output], page 203.

val = split_long_rows () [Built-in Function]
old_val = split_long_rows (new_val) [Built-in Function]
split_long_rows (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether rows of a matrix may be
split when displayed to a terminal window. If the rows are split, Octave will display
the matrix in a series of smaller pieces, each of which can fit within the limits of
your terminal width and each set of rows is labeled so that you can easily see which
columns are currently being displayed. For example:

octave:13> rand (2,10)
ans =

Columns 1 through 6:

0.75883 0.93290 0.40064 0.43818 0.94958 0.16467
0.75697 0.51942 0.40031 0.61784 0.92309 0.40201

Columns 7 through 10:

0.90174 0.11854 0.72313 0.73326
0.44672 0.94303 0.56564 0.82150

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 204.

Octave automatically switches to scientific notation when values become very large or
very small. This guarantees that you will see several significant figures for every value in
a matrix. If you would prefer to see all values in a matrix printed in a fixed point format,
you can set the built-in variable fixed_point_format to a nonzero value. But doing so is
not recommended, because it can produce output that can easily be misinterpreted.

Chapter 4: Numeric Data Types 49

val = fixed_point_format () [Built-in Function]
old_val = fixed_point_format (new_val) [Built-in Function]
fixed_point_format (new_val, "local") [Built-in Function]

Query or set the internal variable that controls whether Octave will use a scaled
format to print matrix values such that the largest element may be written with a
single leading digit with the scaling factor is printed on the first line of output. For
example:

octave:1> logspace (1, 7, 5)’
ans =

1.0e+07 *

0.00000
0.00003
0.00100
0.03162
1.00000

Notice that first value appears to be zero when it is actually 1. For this reason, you
should be careful when setting fixed_point_format to a nonzero value.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format], page 204, [output_-max_field_width], page 47, [output_precision],
page 48.

4.1.1 Empty Matrices

A matrix may have one or both dimensions zero, and operations on empty matrices are
handled as described by Carl de Boor in An Empty Exercise, SIGNUM, Volume 25, pages
2-6, 1990 and C. N. Nett and W. M. Haddad, in A System-Theoretic Appropriate Realiza-
tion of the Empty Matrix Concept, IEEE Transactions on Automatic Control, Volume 38,
Number 5, May 1993. Briefly, given a scalar s, an m x n matrix M,,,, and an m X n empty
matrix [|,xn (with either one or both dimensions equal to zero), the following are true:

: Han

[mxn + Hmxn = [Jmxn
H()Xm Mpxn = []Oxn
men . ano - meo

[Jmxo * [Joxn = Omxn

By default, dimensions of the empty matrix are printed along with the empty matrix
symbol, ‘[1’. The built-in variable print_empty_dimensions controls this behavior.

val = print_empty_dimensions () [Built-in Function]
old_val = print_empty_dimensions (new_val) [Built-in Function]

20 GNU Octave

print_empty_dimensions (new_val, "local") [Built-in Function]
Query or set the internal variable that controls whether the dimensions of empty
matrices are printed along with the empty matrix symbol, ‘[]’. For example, the
expression

zeros (3, 0)
will print
ans = [](3x0)
When called from inside a function with the "local" option, the variable is changed

locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

See also: [format|, page 204.

Empty matrices may also be used in assignment statements as a convenient way to delete
rows or columns of matrices. See Section 8.6 [Assignment Expressions]|, page 137.

When Octave parses a matrix expression, it examines the elements of the list to determine
whether they are all constants. If they are, it replaces the list with a single matrix constant.

4.2 Ranges

A range is a convenient way to write a row vector with evenly spaced elements. A range
expression is defined by the value of the first element in the range, an optional value for the
increment between elements, and a maximum value which the elements of the range will
not exceed. The base, increment, and limit are separated by colons (the ‘:’ character) and
may contain any arithmetic expressions and function calls. If the increment is omitted, it
is assumed to be 1. For example, the range

1:5
defines the set of values ‘[1, 2, 3, 4, 51’, and the range
1:3:5

defines the set of values ‘[1, 4 1.

Although a range constant specifies a row vector, Octave does not convert range con-
stants to vectors unless it is necessary to do so. This allows you to write a constant like ‘1
: 10000’ without using 80,000 bytes of storage on a typical 32-bit workstation.

A common example of when it does become necessary to convert ranges into vectors

occurs when they appear within a vector (i.e., inside square brackets). For instance, whereas
x=0:0.1:1;

defines x to be a variable of type range and occupies 24 bytes of memory, the expression
y=[00:0.1:1];

defines y to be of type matrix and occupies 88 bytes of memory.

Note that the upper (or lower, if the increment is negative) bound on the range is not
always included in the set of values, and that ranges defined by floating point values can
produce surprising results because Octave uses floating point arithmetic to compute the
values in the range. If it is important to include the endpoints of a range and the number of

elements is known, you should use the linspace function instead (see Section 16.3 [Special
Utility Matrices], page 343).

Chapter 4: Numeric Data Types 51

When adding a scalar to a range, subtracting a scalar from it (or subtracting a range
from a scalar) and multiplying by scalar, Octave will attempt to avoid unpacking the range
and keep the result as a range, too, if it can determine that it is safe to do so. For instance,
doing

a = 2%(1:1e7) - 1;

will produce the same result as ‘1:2:2e7-1’, but without ever forming a vector with ten
million elements.

Using zero as an increment in the colon notation, as ‘1:0:1’ is not allowed, because a
division by zero would occur in determining the number of range elements. However, ranges
with zero increment (i.e., all elements equal) are useful, especially in indexing, and Octave
allows them to be constructed using the built-in function ones. Note that because a range
must be a row vector, ‘ones (1, 10)’ produces a range, while ‘ones (10, 1)’ does not.

When Octave parses a range expression, it examines the elements of the expression to
determine whether they are all constants. If they are, it replaces the range expression with
a single range constant.

4.3 Single Precision Data Types

Octave includes support for single precision data types, and most of the functions in Octave
accept single precision values and return single precision answers. A single precision variable
is created with the single function.

single (x) [Built-in Function]
Convert x to single precision type.

See also: [double], page 45.

for example:

sngl = single (rand (2, 2))
= sngl =
0.37569 0.92982
0.11962 0.50876
class (sngl)
= single

Many functions can also return single precision values directly. For example

ones (2, 2, "single")
zeros (2, 2, "single")
eye (2, 2, "single")
rand (2, 2, "single")
NaN (2, 2, "single")
NA (2, 2, "single")
Inf (2, 2, "single")

will all return single precision matrices.

92 GNU Octave

4.4 Integer Data Types

Octave supports integer matrices as an alternative to using double precision. It is possible
to use both signed and unsigned integers represented by 8, 16, 32, or 64 bits. It should be
noted that most computations require floating point data, meaning that integers will often
change type when involved in numeric computations. For this reason integers are most
often used to store data, and not for calculations.

In general most integer matrices are created by casting existing matrices to integers.
The following example shows how to cast a matrix into 32 bit integers.
float = rand (2, 2)

= float = 0.37569 0.92982

0.11962 0.50876
integer = int32 (float)
= integer = 0 1
0 1

As can be seen, floating point values are rounded to the nearest integer when converted.

isinteger (x) [Built-in Function]
Return true if x is an integer object (int8, uint8, intl6, etc.). Note that
isinteger (14) is false because numeric constants in Octave are double precision
floating point values.

See also: [isfloat], page 59, [ischar]|, page 64, [islogical|, page 60, [isnumeric|, page 59,
[isa], page 37.

int8 (x) [Built-in Function]
Convert x to 8-bit integer type.

uint8 (x) [Built-in Function]
Convert x to unsigned 8-bit integer type.

int16 (x) [Built-in Function]
Convert x to 16-bit integer type.

uint16 (x) [Built-in Function]
Convert x to unsigned 16-bit integer type.

int32 (x) [Built-in Function]
Convert x to 32-bit integer type.

uint32 (x) [Built-in Function]
Convert x to unsigned 32-bit integer type.

int64 (x) [Built-in Function]
Convert x to 64-bit integer type.

uint64 (x) [Built-in Function]
Convert x to unsigned 64-bit integer type.

Chapter 4: Numeric Data Types 53

intmax (type) [Built-in Function]
Return the largest integer that can be represented in an integer type. The variable
type can be
int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is uint32.

See also: [intmin|, page 53, [bitmax], page 55.

intmin (type) [Built-in Function]
Return the smallest integer that can be represented in an integer type. The variable
type can be
int8 signed 8-bit integer.
int16 signed 16-bit integer.
int32 signed 32-bit integer.
int64 signed 64-bit integer.
uint8 unsigned 8-bit integer.

uint16 unsigned 16-bit integer.

uint32 unsigned 32-bit integer.

uint64 unsigned 64-bit integer.

The default for type is uint32.

See also: [intmax]|, page 53, [bitmax], page 55.

4.4.1 Integer Arithmetic

While many numerical computations can’t be carried out in integers, Octave does support
basic operations like addition and multiplication on integers. The operators +, -, .*, and
./ work on integers of the same type. So, it is possible to add two 32 bit integers, but not
to add a 32 bit integer and a 16 bit integer.

When doing integer arithmetic one should consider the possibility of underflow and
overflow. This happens when the result of the computation can’t be represented using the
chosen integer type. As an example it is not possible to represent the result of 10 — 20
when using unsigned integers. Octave makes sure that the result of integer computations is

54 GNU Octave

the integer that is closest to the true result. So, the result of 10 — 20 when using unsigned
integers is zero.

When doing integer division Octave will round the result to the nearest integer. This is
different from most programming languages, where the result is often floored to the nearest
integer. So, the result of int32(5) ./ int32(8) is 1.

idivide (x, y, op) [Function File]
Integer division with different rounding rules.
The standard behavior of integer division such as a ./ b is to round the result to
the nearest integer. This is not always the desired behavior and idivide permits
integer element-by-element division to be performed with different treatment for the
fractional part of the division as determined by the op flag. op is a string with one
of the values:

"fix" Calculate a ./ b with the fractional part rounded towards zero.

"round" Calculate a ./ b with the fractional part rounded towards the nearest
integer.

"floor" Calculate a ./ b with the fractional part rounded towards negative in-
finity.

"ceil" Calculate a ./ b with the fractional part rounded towards positive infin-
ity.

If op is not given it defaults to "fix". An example demonstrating these rounding
rules is

idivide (int8 ([-3, 3]), int8 (4), "fix")
= int8 ([0, 0])

idivide (int8 ([-3, 3]), int8 (4), "round")
= int8 ([-1, 1])

idivide (int8 ([-3, 3]), int8 (4), "floor")
= int8 ([-1, 0])

idivide (int8 ([-3, 3]), int8 (4), "ceil")
= int8 ([0, 1]1)

See also: [ldivide], page 131, [rdivide], page 132.

4.5 Bit Manipulations

Octave provides a number of functions for the manipulation of numeric values on a bit by
bit basis. The basic functions to set and obtain the values of individual bits are bitset
and bitget.

C = bitset (4, n) [Function File]

C = bitset (4, n, val) [Function File]
Set or reset bit(s) n of unsigned integers in A. val = 0 resets and val = 1 sets the
bits. The lowest significant bit is: n = 1

dec2bin (bitset (10, 1))
= 1011

Chapter 4: Numeric Data Types 55

See also: [bitand], page 55, [bitor|, page 55, [bitxor|, page 56, [bitget], page 55,
[bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

c = bitget (4, n) [Function File]
Return the status of bit(s) n of unsigned integers in A the lowest significant bit is n
= 1.

bitget (100, 8:-1:1)
=01 1 0 0 1 0 O

See also: [bitand], page 55, [bitor], page 55, [bitxor|, page 56, [bitset], page 54,
[bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

The arguments to all of Octave’s bitwise operations can be scalar or arrays, except for
bitcmp, whose k argument must a scalar. In the case where more than one argument is an
array, then all arguments must have the same shape, and the bitwise operator is applied to
each of the elements of the argument individually. If at least one argument is a scalar and
one an array, then the scalar argument is duplicated. Therefore

bitget (100, 8:-1:1)
is the same as
bitget (100 * ones (1, 8), 8:-1:1)

It should be noted that all values passed to the bit manipulation functions of Octave
are treated as integers. Therefore, even though the example for bitset above passes the
floating point value 10, it is treated as the bits [1, 0, 1, 0] rather than the bits of the
native floating point format representation of 10.

As the maximum value that can be represented by a number is important for bit ma-
nipulation, particularly when forming masks, Octave supplies the function bitmax.

bitmax () [Built-in Function]
bitmax ("double") [Built-in Function]
bitmax ("single") [Built-in Function]

Return the largest integer that can be represented within a floating point value. The
default class is "double", but "single" is a valid option. On IEEE-754 compatible
systems, bitmax is 2°% — 1.

This is the double precision version of the functions intmax, previously discussed.
Octave also includes the basic bitwise ’and’, ’or’ and ’exclusive or’ operators.
bitand (x, y) [Built-in Function]
Return the bitwise AND of non-negative integers. x, y must be in the range [0,bitmax]
See also: [bitor], page 55, [bitxor], page 56, [bitset|, page 54, [bitget], page 55,
[bitcmp], page 56, [bitshift], page 56, [bitmax]|, page 55.
bitor (x, y) [Built-in Function]
Return the bitwise OR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitor], page 55, [bitxor], page 56, [bitset], page 54, [bitget], page 55,
[bitcmp], page 56, [bitshift], page 56, [bitmax]|, page 55.

26 GNU Octave

bitxor (x, y) [Built-in Function]
Return the bitwise XOR of non-negative integers. x, y must be in the range [0,bitmax]

See also: [bitand], page 55, [bitor], page 55, [bitset], page 54, [bitget], page 55,
[bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

The bitwise 'not’ operator is a unary operator that performs a logical negation of each
of the bits of the value. For this to make sense, the mask against which the value is negated
must be defined. Octave’s bitwise 'not” operator is bitcmp.

bitcmp (4, k) [Function File]
Return the k-bit complement of integers in A. If k is omitted k = 1log2 (bitmax) + 1
is assumed.
bitcmp (7,4)
= 8
dec2bin (11)
= 1011
dec2bin (bitcmp (11, 6))
= 110100

See also: [bitand], page 55, [bitor], page 55, [bitxor]|, page 56, [bitset], page 54, [bitget],
page 55, [bitcmp], page 56, [bitshift], page 56, [bitmax], page 55.

Octave also includes the ability to left-shift and right-shift values bitwise.

bitshift (a, k) [Built-in Function]

bitshift (a, k, n) [Built-in Function]
Return a k bit shift of n-digit unsigned integers in a. A positive k leads to a left
shift; A negative value to a right shift. If n is omitted it defaults to log2(bitmax)+1.
n must be in the range [1,log2(bitmax)+1] usually [1,33].

bitshift (eye (3), 1)

OOMU,
o N O
N O O

bitshift (10, [-2, -1, 0, 1, 2])
=2 5 10 20 40

See also: [bitand], page 55, [bitor], page 55, [bitxor], page 56, [bitset], page 54, [bitget],
page 55, [bitcmp]|, page 56, [bitmax], page 55.
Bits that are shifted out of either end of the value are lost. Octave also uses arithmetic
shifts, where the sign bit of the value is kept during a right shift. For example:
bitshift (-10, -1)

= -5
bitshift (int8 (-1), -1)
= -1

Note that bitshift (int8 (-1), -1) is -1 since the bit representation of -1 in the int8
data typeis [1, 1, 1, 1, 1, 1, 1, 1].

Chapter 4: Numeric Data Types 57

4.6 Logical Values

Octave has built-in support for logical values, i.e., variables that are either true or false.
When comparing two variables, the result will be a logical value whose value depends on
whether or not the comparison is true.

The basic logical operations are &, |, and !, which correspond to “Logical And”, “Logical
Or”, and “Logical Negation”. These operations all follow the usual rules of logic.

It is also possible to use logical values as part of standard numerical calculations. In
this case true is converted to 1, and false to 0, both represented using double precision
floating point numbers. So, the result of truex22 - false/6 is 22.

Logical values can also be used to index matrices and cell arrays. When indexing with
a logical array the result will be a vector containing the values corresponding to true parts
of the logical array. The following example illustrates this.
data = [1, 2; 3, 4 1;
idx = (data <= 2);
data(idx)
= ans = [1; 2]

Instead of creating the idx array it is possible to replace data(idx) with data(data <=2)
in the above code.

Logical values can also be constructed by casting numeric objects to logical values, or
by using the true or false functions.
logical (x) [Built-in Function]
Convert x to logical type.

See also: [double], page 45, [single], page 51, [char|, page 67.

true (x) [Built-in Function]
true (n, m) [Built-in Function]
true (n, m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 1. If invoked
with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [false]|, page 57.

false (x) [Built-in Function]
false (n, m) [Built-in Function]
false (n,m k, ...) [Built-in Function]

Return a matrix or N-dimensional array whose elements are all logical 0. If invoked
with a single scalar integer argument, return a square matrix of the specified size.
If invoked with two or more scalar integer arguments, or a vector of integer values,
return an array with given dimensions.

See also: [true], page 57.

o8 GNU Octave

4.7 Promotion and Demotion of Data Types

Many operators and functions can work with mixed data types. For example,

uint8 (1) + 1
= 2

where the above operator works with an 8-bit integer and a double precision value and
returns an 8-bit integer value. Note that the type is demoted to an 8-bit integer, rather
than promoted to a double precision value as might be expected. The reason is that if
Octave promoted values in expressions like the above with all numerical constants would
need to be explicitly cast to the appropriate data type like

uint8 (1) + uint8 (1)
= 2
which becomes difficult for the user to apply uniformly and might allow hard to find bugs
to be introduced. The same applies to single precision values where a mixed operation such
as
single (1) + 1
= 2

returns a single precision value. The mixed operations that are valid and their returned
data types are

Mixed Operation Result
double OP single single
double OP integer integer
double OP char double
double OP logical double
single OP integer integer
single OP char single
single OP logical single

The same logic applies to functions with mixed arguments such as

min (single (1), 0)
= 0

where the returned value is single precision.
In the case of mixed type indexed assignments, the type is not changed. For example,

x = ones (2, 2);
x (1, 1) = single (2)

= x =2 1

1 1

where x remains of the double precision type.

4.8 Predicates for Numeric Objects

Since the type of a variable may change during the execution of a program, it can be
necessary to do type checking at run-time. Doing this also allows you to change the behavior
of a function depending on the type of the input. As an example, this naive implementation

Chapter 4: Numeric Data Types 59

of abs returns the absolute value of the input if it is a real number, and the length of the
input if it is a complex number.

function a = abs (x)
if (isreal (x))
a = sign (x) .* x;
elseif (iscomplex (x))
a = sqrt (real(x)."2 + imag(x)."2);
endif
endfunction

The following functions are available for determining the type of a variable.

isnumeric (x) [Built-in Function]
Return true if x is a numeric object, i.e., an integer, real, or complex array. Logical
and character arrays are not considered to be numeric.

See also: [isinteger|, page 52, [isfloat], page 59, [isreal], page 59, [iscomplex], page 59,
[islogical], page 60, [ischar|, page 64, [iscell], page 103, [isstruct], page 98.

isfloat (x) [Built-in Function]
Return true if x is a floating-point numeric object. Objects of class double or single
are floating-point objects.

See also: [isinteger], page 52, [ischar], page 64, [islogical|, page 60, [isnumeric|, page 59,
[isa], page 37.

isreal (x) [Built-in Function]
Return true if x is a non-complex matrix or scalar. For compatibility with MATLAB,
this includes logical and character matrices.

See also: [iscomplex], page 59, [isnumeric|, page 59.

iscomplex (x) [Built-in Function]
Return true if x is a complex-valued numeric object.

See also: [isreal], page 59, [isnumeric], page 59.

ismatrix (a) [Built-in Function]
Return true if a is a numeric, logical, or character matrix. Scalars (1x1 matrices) and
vectors (1xN or Nx1 matrices) are subsets of the more general N-dimensional matrix
and ismatrix will return true for these objects as well.

See also: [isscalar], page 60, [isvector], page 59, [iscell], page 103, [isstruct], page 98,
[issparse], page 431.

isvector (x) [Function File]
Return true if x is a vector. A vector is a 2-D array where one of the dimensions is
equal to 1. As a consequence a 1x1 array, or scalar, is also a vector.

See also: [isscalar], page 60, [ismatrix], page 59, [size], page 42, [rows|, page 41,
[columns], page 41, [length], page 41.

60 GNU Octave

isrow (x) [Function File]
Return true if x is a row vector.

See also: [iscolumn]|, page 60, [isscalar], page 60, [isvector]|, page 59, [ismatrix],
page H9.

iscolumn (x) [Function File]
Return true if x is a column vector.

See also: [isrow], page 60, [isscalar], page 60, [isvector], page 59, [ismatrix|, page 59.

isscalar (x) [Function File]
Return true if x is a scalar.

See also: [isvector], page 59, [ismatrix], page 59.

issquare (x) [Function File]
Return true if x is a square matrix.

See also: [isscalar|, page 60, [isvector], page 59, [ismatrix]|, page 59, [size], page 42.

issymmetric (x) [Function File]

issymmetric (x, tol) [Function File]
Return true if x is a symmetric matrix within the tolerance specified by tol. The
default tolerance is zero (uses faster code). Matrix x is considered symmetric if norm
(x - x.?, Inf) / norm (x, Inf) < tol.

See also: [ishermitian], page 60, [isdefinite], page 60.

ishermitian (x) [Function File]

ishermitian (x, tol) [Function File]
Return true if x is Hermitian within the tolerance specified by tol. The default
tolerance is zero (uses faster code). Matrix x is considered symmetric if norm (x -
x’, Inf) / norm (x, Inf) < tol.

See also: [issymmetric], page 60, [isdefinite], page 60.

isdefinite (x) [Function File]

isdefinite (x, tol) [Function File]
Return 1 if x is symmetric positive definite within the tolerance specified by tol or 0
if x is symmetric positive semidefinite. Otherwise, return -1. If tol is omitted, use a
tolerance of 100 * eps * norm (x, "fro")

See also: [issymmetric|, page 60, [ishermitian], page 60.
islogical (x) [Built-in Function]

isbool (x) [Built-in Function]
Return true if x is a logical object.

See also: [isfloat], page 59, [isinteger], page 52, [ischar|, page 64, [isnumeric], page 59,
[isa], page 37.

Chapter 4: Numeric Data Types 61

isprime (x) [Function File]
Return a logical array which is true where the elements of x are prime numbers and
false where they are not.

If the maximum value in x is very large, then you should be using special purpose
factorization code.
isprime (1:6)
= [0, 1, 1, 0, 1, O]

See also: [primes]|, page 366, [factor], page 365, [gcd], page 365, [lem], page 366.

If instead of knowing properties of variables, you wish to know which variables are
defined and to gather other information about the workspace itself, see Section 7.3 [Status
of Variables|, page 117.

Chapter 5: Strings 63

5 Strings

A string constant consists of a sequence of characters enclosed in either double-quote or
single-quote marks. For example, both of the following expressions

"parrot"
’parrot’

represent the string whose contents are ‘parrot’. Strings in Octave can be of any length.

Since the single-quote mark is also used for the transpose operator (see Section 8.3
[Arithmetic Ops], page 129) but double-quote marks have no other purpose in Octave, it is
best to use double-quote marks to denote strings.

Strings can be concatenated using the notation for defining matrices. For example, the
expression

["foo" , "bar" , "baz"]

produces the string whose contents are ‘foobarbaz’. See Chapter 4 [Numeric Data Types],
page 45, for more information about creating matrices.

5.1 Escape Sequences in String Constants

In double-quoted strings, the backslash character is used to introduce escape sequences that
represent other characters. For example, ‘\n’ embeds a newline character in a double-quoted
string and ‘\"’ embeds a double quote character. In single-quoted strings, backslash is not
a special character. Here is an example showing the difference:
toascii ("\n")
= 10
toascii (’\n’)
= [92 110]
Here is a table of all the escape sequences used in Octave (within double quoted strings).
They are the same as those used in the C programming language.

\\ Represents a literal backslash, ‘\’.

\" Represents a literal double-quote character, ‘"’.

\’ Represents a literal single-quote character, ‘*’.

\O Represents the “nul” character, control-@, ASCII code 0.
\a Represents the “alert” character, control-g, ASCII code 7.
\b Represents a backspace, control-h, ASCII code 8.

\f Represents a formfeed, control-1, ASCII code 12.

\n Represents a newline, control-j, ASCII code 10.

\r Represents a carriage return, control-m, ASCII code 13.
\t Represents a horizontal tab, control-i, ASCII code 9.

\v Represents a vertical tab, control-k, ASCII code 11.

In a single-quoted string there is only one escape sequence: you may insert a single quote
character using two single quote characters in succession. For example,

64 GNU Octave

’I can’’t escape’
= I can’t escape
In scripts the two different string types can be distinguished if necessary by using is_
dg_string and is_sq_string.

is_dq_string (x) [Built-in Function]
Return true if x is a double-quoted character string.

See also: [is_sq_string], page 64, [ischar], page 64.

is_sq_string (x) [Built-in Function]
Return true if x is a single-quoted character string.

See also: [is_dq_string], page 64, [ischar|, page 64.

5.2 Character Arrays

The string representation used by Octave is an array of characters, so internally the string
"dddddddddd" is actually a row vector of length 10 containing the value 100 in all places
(100 is the ASCII code of "d"). This lends itself to the obvious generalization to character
matrices. Using a matrix of characters, it is possible to represent a collection of same-length
strings in one variable. The convention used in Octave is that each row in a character matrix
is a separate string, but letting each column represent a string is equally possible.

The easiest way to create a character matrix is to put several strings together into a
matrix.
collection = ["String #1"; "String #2" 1;
This creates a 2-by-9 character matrix.

The function ischar can be used to test if an object is a character matrix.

ischar (x) [Built-in Function]
Return true if x is a character array.

See also: [isfloat], page 59, [isinteger], page 52, [islogical], page 60, [isnumeric], page 59,
[iscellstr], page 109, [isa], page 37.

To test if an object is a string (i.e., a character vector and not a character matrix) you
can use the ischar function in combination with the isvector function as in the following
example:

ischar(collection)
= ans =1

ischar(collection) && isvector(collection)
= ans = 0

ischar("my string") && isvector("my string")
= ans =1
One relevant question is, what happens when a character matrix is created from strings
of different length. The answer is that Octave puts blank characters at the end of strings
shorter than the longest string. It is possible to use a different character than the blank
character using the string_fill_char function.

Chapter 5: Strings 65

val = string_f£fill_char () [Built-in Function]
old_val = string_fill_char (new_val) [Built-in Function]
string_fill_char (new_val, "local") [Built-in Function]
Query or set the internal variable used to pad all rows of a character matrix to the
same length. It must be a single character. The default value is " " (a single space).

For example:

string fill_char ("X");

["these"; "are"; "strings" 1]
= "theseXX"
"areXXXX"
"strings"

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

This shows a problem with character matrices. It simply isn’t possible to represent
strings of different lengths. The solution is to use a cell array of strings, which is described
in Section 6.2.4 [Cell Arrays of Strings|, page 108.

5.3 Creating Strings

The easiest way to create a string is, as illustrated in the introduction, to enclose a text
in double-quotes or single-quotes. It is however possible to create a string without actually
writing a text. The function blanks creates a string of a given length consisting only of
blank characters (ASCII code 32).

blanks (n) [Function File]
Return a string of n blanks, for example:
blanks (10);
whos ans;
=
Attr Name Size Bytes Class
ans 1x10 10 char

See also: [repmat], page 344.

5.3.1 Concatenating Strings

It has been shown above that strings can be concatenated using matrix notation (see
Chapter 5 [Strings|, page 63, Section 5.2 [Character Arrays|, page 64). Apart from that,
there are several functions to concatenate string objects: char, strvcat, strcat and
cstrcat. In addition, the general purpose concatenation functions can be used: see [cat],
page 336, [horzcat|, page 336 and [vertcat], page 337.

e All string concatenation functions except cstrcat convert numerical input into char-
acter data by taking the corresponding ASCII character for each element, as in the
following example:

66

GNU Octave

char([98, 97, 110, 97, 110, 971)
= ans =

banana

e char and strvcat concatenate vertically, while strcat and cstrcat concatenate hor-
izontally. For example:

char("an apple", "two pears")
= ans =
an apple
two pears

strcat("oc", "tave", " is", " good", " for you")
= ans =

octave is good for you

e char generates an empty row in the output for each empty string in the input. strvcat,
on the other hand, eliminates empty strings.

char("orange“, "green", nn “red")
= ans =
orange

green
red

strvcat ("orange", "green", "", "red")
= ans =

orange

green

red

e All string concatenation functions except cstrcat also accept cell array data (see
Section 6.2 [Cell Arrays|, page 102). char and strvcat convert cell arrays into char-
acter arrays, while strcat concatenates within the cells of the cell arrays:

char({"red", "green", ""
= ans =
red

"blue"})

green

blue

strcat({"abc"; "ghi"}, {"def“; "jkl"})

= ans =
{
[1,1] = abcdef
[2,1] = ghijkl
}

e strcat removes trailing white space in the arguments (except within cell arrays), while

Chapter 5: Strings 67

cstrcat leaves white space untouched. Both kinds of behavior can be useful as can be
seen in the examples:

strcat(["dirl";"directory2"], ["/";"/"], ["filel";"file2"])
= ans =
dirl/filel
directory2/file2

cstrcat(["thirteen apples"; "a banana"], [" 5$";" 1$"]1)
= ans =
thirteen apples 5$
a banana 1$

Note that in the above example for cstrcat, the white space originates from the inter-
nal representation of the strings in a string array (see Section 5.2 [Character Arrays|,
page 64).

char (x) [Built-in Function]
char (x,...) [Built-in Function]
char (s1,s2,...) [Built-in Function]
char (cell_array) [Built-in Function]

Create a string array from one or more numeric matrices, character matrices, or cell
arrays. Arguments are concatenated vertically. The returned values are padded with
blanks as needed to make each row of the string array have the same length. Empty
input strings are significant and will concatenated in the output.

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
char can mostly be converted back with cellstr. For example:

char ([97, 98, 991, "", {"98", "99", 100}, "stri", ["ha", "1f"])
= ["abc "
ll98 n
ll99 n
lld n
"stri "
"half "]

See also: [strvcat], page 67, [cellstr], page 109.

strvcat (x) [Built-in Function]
strvcat (x, ...) [Built-in Function]
strvcat (si,s2,...) [Built-in Function]
strvcat (cell_array) [Built-in Function]

Create a character array from one or more numeric matrices, character matrices, or
cell arrays. Arguments are concatenated vertically. The returned values are padded
with blanks as needed to make each row of the string array have the same length.
Unlike char, empty strings are removed and will not appear in the output.

63 GNU Octave

For numerical input, each element is converted to the corresponding ASCII character.
A range error results if an input is outside the ASCII range (0-255).

For cell arrays, each element is concatenated separately. Cell arrays converted through
strvcat can mostly be converted back with cellstr. For example:

strvcat ([97, 98, 991, "", {"98", "99", 100}, "str1", ["ha", "1f"])
= ["abc "
ll98 n
1199 n
lld n
"stri "
"half "]

See also: [char|, page 67, [strcat], page 68, [cstrcat], page 68.

strcat (s1, s2,...) [Function File]
Return a string containing all the arguments concatenated horizontally. If the argu-
ments are cells strings, strcat returns a cell string with the individual cells concate-
nated. For numerical input, each element is converted to the corresponding ASCII
character. Trailing white space is eliminated. For example:

S = [llabll; IcheH];
strcat (s, s, s)
=
"ab ab ab "
"cdecdecde"

s = { "ab"; "cde" };
strcat (s, s, s)
=
{
[1,1]
[2,1]

ababab
cdecdecde

}
See also: [cstrcat], page 68, [char|, page 67, [strvcat], page 67.

cstrcat (si,s2,...) [Function File]
Return a string containing all the arguments concatenated horizontally. Trailing white
space is preserved. For example:

cstrcat ("ab "oted")
= "ab cd"

s = ["ab"; "cde" 1;
cstrcat (s, s, s)

= "ab ab ab "

"cdecdecde"

See also: [strcat], page 68, [char], page 67, [strvcat], page 67.

Chapter 5: Strings 69

5.3.2 Conversion of Numerical Data to Strings

Apart from the string concatenation functions (see Section 5.3.1 [Concatenating Strings],
page 65) which cast numerical data to the corresponding ASCII characters, there are several
functions that format numerical data as strings. mat2str and num2str convert real or
complex matrices, while int2str converts integer matrices. int2str takes the real part
of complex values and round fractional values to integer. A more flexible way to format
numerical data as strings is the sprintf function (see Section 14.2.4 [Formatted Output],
page 222, [doc-sprintf], page 222).

s = mat2str (x, n) [Function File]
mat2str (x, n, "class") [Function File]
Format real, complex, and logical matrices as strings. The returned string may be
used to reconstruct the original matrix by using the eval function.

(4]
I

The precision of the values is given by n. If n is a scalar then both real and imaginary
parts of the matrix are printed to the same precision. Otherwise n (1) defines the
precision of the real part and n(2) defines the precision of the imaginary part. The
default for n is 15.

If the argument "class" is given then the class of x is included in the string in such a
way that eval will result in the construction of a matrix of the same class.

mat2str ([-1/3 + i/7; 1/3 - i/7], [4 2])
= "[-0.3333+0.14i;0.3333-0.14i]"

mat2str ([-1/3 +i/7; 1/3 -i/7 1, [4 2]1)
= "[-0.3333+0i 0+0.14i;0.3333+0i -0-0.14i]"

mat2str (int16([1 -1]), "class")
= "int16([1 -1])"

mat2str (logical (eye (2)))
= "[true false;false true]"

isequal (x, eval (mat2str (x)))
= 1

See also: [sprintf], page 222, [num2str]|, page 69, [int2str], page 70.

num2str (x) [Function File]
num2str (x, precision) [Function File]
num2str (x, format) [Function File]

Convert a number (or array) to a string (or a character array). The optional second
argument may either give the number of significant digits (precision) to be used in
the output or a format template string (format) as in sprintf (see Section 14.2.4
[Formatted Output], page 222). num2str can also handle complex numbers. For
example:

70 GNU Octave

num2str (123.456)
= "123.46"

num2str (123.456, 4)
= "123.5"

s = num2str ([1, 1.34; 3, 3.56], ")5.1f")

= s =
1.0 1.3
3.0 3.6
whos s
=
Attr Name Size Bytes Class
s 2x8 16 char

num2str (1.234 + 27.31)
= "1.234+27.31"
The num2str function is not very flexible. For better control over the results, use
sprintf (see Section 14.2.4 [Formatted Output], page 222). Note that for complex x,
the format string may only contain one output conversion specification and nothing
else. Otherwise, you will get unpredictable results.

See also: [sprintf], page 222, [int2str]|, page 70, [mat2str]|, page 69.

int2str (n) [Function File]
Convert an integer (or array of integers) to a string (or a character array).

int2str (123)
= "123"

s = int2str ([1, 2, 3; 4, 5, 6])

= s =
1 2 3
4 5 6
whos s
= s =
Attr Name Size Bytes Class
S 2x7 14 char

This function is not very flexible. For better control over the results, use sprintf
(see Section 14.2.4 [Formatted Output], page 222).

See also: [sprintf]|, page 222, [num2str], page 69, [mat2str], page 69.

5.4 Comparing Strings

Since a string is a character array, comparisons between strings work element by element
as the following example shows:

Chapter 5: Strings 71

GNU = "GNU’s Not UNIX";
spaces = (GNU == " ")
= spaces =
0 0 0 0 0 1 0 0 0 1 0 0 0 0

To determine if two strings are identical it is necessary to use the strcmp function. It com-
pares complete strings and is case sensitive. strncmp compares only the first N characters
(with N given as a parameter). strcmpi and strncmpi are the corresponding functions for
case-insensitive comparison.

strcmp (s1, s2) [Built-in Function]
Return 1 if the character strings s1 and s2 are the same, and 0 otherwise.

If either sI or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

See also: [strcmpi], page 71, [strncmp], page 71, [strncmpi], page 72.

strncmp (si1, s2, n) [Built-in Function]
Return 1 if the first n characters of strings s1 and s2 are the same, and 0 otherwise.

strncmp ("abce", "abcd", 3)
= 1

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

strncmp ("abce", {"abcd", "bca", "abc"}, 3)
= [1, 0, 1]

Caution: For compatibility with MATLAB, Octave’s strncmp function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

See also: [strncmpil, page 72, [stremp]|, page 71, [strempi], page 71.

strcmpi (s1, s2) [Built-in Function]
Return 1 if the character strings s1 and s2 are the same, disregarding case of alpha-
betic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strcmp function returns 1 if the
character strings are equal, and 0 otherwise. This is just the opposite of the corre-
sponding C library function.

72 GNU Octave

Caution: National alphabets are not supported.

See also: [strcmp], page 71, [strncmp], page 71, [strncmpi], page 72.

strncmpi (si, s2, n) [Built-in Function]
Return 1 if the first n character of s1 and s2 are the same, disregarding case of
alphabetic characters, and 0 otherwise.

If either s1 or s2 is a cell array of strings, then an array of the same size is returned,
containing the values described above for every member of the cell array. The other
argument may also be a cell array of strings (of the same size or with only one
element), char matrix or character string.

Caution: For compatibility with MATLAB, Octave’s strncmpi function returns 1 if
the character strings are equal, and 0 otherwise. This is just the opposite of the
corresponding C library function.

Caution: National alphabets are not supported.

See also: [strncmp], page 71, [stremp]|, page 71, [strempi], page 71.

validstr = validatestring (str, strarray) [Function File]

validstr = validatestring (str, strarray, funcname) [Function File]

validstr = validatestring (str, strarray, funcname, [Function File]
varname)

validstr = validatestring (..., position) [Function File]

Verify that str is an element, or substring of an element, in strarray.

When str is a character string to be tested, and strarray is a cellstr of valid values,
then validstr will be the validated form of str where validation is defined as str being
a member or substring of validstr. This is useful for both verifying and expanding
short options, such as "r", to their longer forms, such as "red". If str is a substring
of validstr, and there are multiple matches, the shortest match will be returned if all
matches are substrings of each other. Otherwise, an error will be raised because the
expansion of str is ambiguous. All comparisons are case insensitive.

The additional inputs funcname, varname, and position are optional and will make
any generated validation error message more specific.
Examples:

validatestring ("r", {"red", "green", "blue"})

= "red"

validatestring ("b", {"red", "green", "blue", "black"})
= error: validatestring: multiple unique matches were found for ’b’:
blue, black

See also: [strcmp], page 71, [strcmpi], page 71.

5.5 Manipulating Strings

Octave supports a wide range of functions for manipulating strings. Since a string is just a
matrix, simple manipulations can be accomplished using standard operators. The following
example shows how to replace all blank characters with underscores.

Chapter 5: Strings 73

quote = ...

"First things first, but not necessarily in that order";
quote(quote == " ") = "_*
= quote =

First_things_first,_but_not_necessarily_in_that_order

For more complex manipulations, such as searching, replacing, and general regular ex-
pressions, the following functions come with Octave.

deblank (s) [Function File]
Remove trailing whitespace and nulls from s. If s is a matrix, deblank trims each row
to the length of longest string. If s is a cell array of strings, operate recursively on
each string element.

Examples:
deblank (" abc ")
= " abc"
deblank ([" abc o def ")
:> [" abc n ; n def Il]

See also: [strtrim|, page 73.

strtrim (s) [Function File]
Remove leading and trailing whitespace from s. If s is a matrix, strtrim trims each
row to the length of longest string. If s is a cell array of strings, operate recursively
on each string element. For example:

strtrim (" abc ")
= "abc"

strtrim ([" abc e o def ")
= ["abc n ; n def“]

See also: [deblank], page 73.

strtrunc (s, n) [Function File]
Truncate the character string s to length n. If s is a character matrix, then the
number of columns is adjusted. If s is a cell array of strings, then the operation is
performed on each cell element and the new cell array is returned.

findstr (s, t) [Function File]

findstr (s, t, overlap) [Function File]
Return the vector of all positions in the longer of the two strings s and t where
an occurrence of the shorter of the two starts. If the optional argument overlap is
true, the returned vector can include overlapping positions (this is the default). For
example:

findstr ("ababab", "a")
= [1, 3, 5];

findstr ("abababa", "aba", 0)
= [1, 5]

74 GNU Octave

Caution: findstr is scheduled for deprecation. Use strfind in all new code.
See also: [strfind], page 74, [strmatch], page 75, [stremp], page 71, [strncmp], page 71,
[strempi], page 71, [strncmpi], page 72, [find], page 333.

idx = strchr (str, chars) Function File

[]
idx = strchr (str, chars, n) [Function File]
idx = strchr (str, chars, n, direction) [Function File]
[i, jl = strchr (...) [Function File]

Search for the string str for occurrences of characters from the set chars. The return
value(s), as well as the n and direction arguments behave identically as in find.

This will be faster than using regexp in most cases.

See also: [find], page 333.

index (s, t) [Function File]

index (s, t, direction) [Function File]
Return the position of the first occurrence of the string t in the string s, or 0 if no
occurrence is found. s may also be a string array or cell array of strings.

For example:

index ("Teststring", "t")
= 4

If direction is ‘"first"’, return the first element found. If directionis ‘"last"’, return
the last element found.

See also: [find], page 333, [rindex], page 74.

rindex (s, t) [Function File]
Return the position of the last occurrence of the character string t in the character
string s, or 0 if no occurrence is found. s may also be a string array or cell array of
strings.

For example:

rindex ("Teststring", "t")
= 6

The rindex function is equivalent to index with direction set to ‘"last"’.

See also: [find], page 333, [index], page 74.

idx = strfind (str, pattern) [Loadable Function]

idx = strfind (cellstr, pattern) [Loadable Function]
Search for pattern in the string str and return the starting index of every such oc-
currence in the vector idx. If there is no such occurrence, or if pattern is longer than
str, then idx is the empty array [].

If a cell array of strings cellstr is specified then idx is a cell array of vectors, as
specified above. Examples:

Chapter 5: Strings 75

strfind ("abababa", "aba'")
= [1, 3, 5]

strfind ({"abababa", "bebebe", "ab"}, "aba")
= ans =

{
[1,1] =

1 3 b5

[1,2] = [1(1x0)
[1,3] = [1(1x0)
}

See also: [findstr]|, page 73, [strmatch], page 75, [regexp|, page 79, [regexpi|, page 81,
[find], page 333.

strmatch (s, 4) [Function File]

strmatch (s, 4, "exact") [Function File]
Return indices of entries of A which begin with the string s. The second argument A
must be a string, character matrix, or a cell array of strings. If the third argument
"exact" is not given, then s only needs to match A up to the length of s. Trailing
spaces and nulls in s and A are ignored when matching. option.

For example:

strmatch ("apple", "apple juice")

=1

strmatch ("apple", ["apple "; "apple juice"; "an apple"])
= [1; 2]

strmatch ("apple", ["apple "; "apple juice"; "an apple"], "exact")
= [1]

Caution: strmatch is scheduled for deprecation. Use strcmpi or strncmpi in all new
code.

See also: [strfind], page 74, [findstr], page 73, [strcmp], page 71, [strncmp]|, page 71,
[strempi], page 71, [strncmpi], page 72, [find], page 333.

[tok, rem] = strtok (str) [Function File]

[tok, rem] strtok (str, delim) [Function File]
Find all characters in the string str up to, but not including, the first character
which is in the string delim. If rem is requested, it contains the remainder of the
string, starting at the first delimiter. Leading delimiters are ignored. If delim is not
specified, whitespace is assumed. str may also be a cell array of strings in which case
the function executes on every individual string and returns a cell array of tokens and
remainders.

Examples:

76

[cstr]
[cstr]

[a,
[a,
[a,
[a,
[a,

GNU Octave

strtok ("this is the life")
= "this"

[tok, rem] = strtok ("14*27+31", "+-%/")
=
tok = 14
rem *27+31

See also: [index|, page 74, [strsplit], page 76, [strchr]|, page 74, [isspace], page 88.

strsplit (s, sep) [Function File]
strsplit (s, sep, strip_empty) [Function File]
Split the string s using one or more separators sep and return a cell array of strings.
Consecutive separators and separators at boundaries result in empty strings, unless
strip_empty is true. The default value of strip_empty is false.

2-D character arrays are split at separators and at the original column boundaries.

Example:
strsplit ("a,b,c", ",")
=
{
[1,1] = a
[1,2] =D
[1,3] = ¢
}
strsplit (["a,b" ; "cde"], ",")
=
{
[1,1] = a
[1,2] = b
[1,3] = cde
}
See also: [strtok], page 75.
..] = strread (str) [Function File]
..] = strread (str, format) [Function File]
..] = strread (str, format, format_repeat) [Function File]
..] = strread (str, format, propl, valuel, ...) [Function File]
.] = strread (str, format, format_repeat, propl, [Function File]
valuel, ...)

Read data from a string.

The string str is split into words that are repeatedly matched to the specifiers in
format. The first word is matched to the first specifier, the second to the second
specifier and so forth. If there are more words than specifiers, the process is repeated
until all words have been processed.

The string format describes how the words in str should be parsed. It may contain
any combination of the following specifiers:

Chapter 5: Strings 7

hs The word is parsed as a string.

AT

n The word is parsed as a number and converted to double.
hd

%u The word is parsed as a number and converted to int32.

%*;, 7%*f7, ’%*S
The word is skipped.
For %s and %d, %f, %n, %u and the associated %™*s ... specifiers an

optional width can be specified as %Ns, etc. where N is an integer > 1.
For %f, format specifiers like %N.Mf are allowed.

literals In addition the format may contain literal character strings; these will be
skipped during reading.

Parsed word corresponding to the first specifier are returned in the first output argu-
ment and likewise for the rest of the specifiers.

By default, format is "%f", meaning that numbers are read from str. This will do if
str contains only numeric fields.

For example, the string

str = "\

Bunny Bugs 5.5\n\
Duck Daffy -7.5e-5\n\
Penguin Tux 6"

can be read using
[a, b, c] = strread (str, "%s %s %f");

Optional numeric argument format_repeat can be used for limiting the number of

items read:
-1 (default) read all of the string until the end.
N Read N times nargout items. 0 (zero) is an acceptable value for for-

mat_repeat.

The behavior of strread can be changed via property-value pairs. The following
properties are recognized:

"commentstyle"
Parts of str are considered comments and will be skipped. value is the
comment style and can be any of the following.

e "shell" Everything from # characters to the nearest end-of-line is
skipped.

e "c" Everything between /* and */ is skipped.

e "c++" Everything from // characters to the nearest end-of-line is
skipped.

e "matlab" Everything from % characters to the nearest end-of-line is
skipped.

78 GNU Octave

e user-supplied. Two options: (1) One string, or 1x1 cell string: Skip
everything to the right of it; (2) 2x1 cell string array: Everything
between the left and right strings is skipped.

"delimiter"
Any character in value will be used to split str into words (default value
= any whitespace).

"emptyvalue":
Value to return for empty numeric values in non-whitespace delimited
data. The default is NaN. When the data type does not support NaN
(int32 for example), then default is zero.

"multipledelimsasone"
Treat a series of consecutive delimiters, without whitespace in between,
as a single delimiter. Consecutive delimiter series need not be vertically
"aligned".

"treatasempty"
Treat single occurrences (surrounded by delimiters or whitespace) of the
string(s) in value as missing values.

"returnonerror"
If value true (1, default), ignore read errors and return normally. If false
(0), return an error.

"whitespace"
Any character in value will be interpreted as whitespace and trimmed; the
string defining whitespace must be enclosed in double quotes for proper
processing of special characters like \t. The default value for whitespace
= " \b\r\n\t" (note the space). Unless whitespace is set to ” (empty)
AND at least one "%s" format conversion specifier is supplied, a space is
always part of whitespace.

See also: [textscan|, page 216, [textread], page 215, [load], page 211, [dlmread],
page 215, [fscanf], page 227.

strrep (s, ptn, rep) [Loadable Function]
strrep (s, ptn, rep, "overlaps", o) [Loadable Function]
Replace all occurrences of the substring ptn in the string s with the string rep and
return the result. For example:
strrep ("This is a test string", "is", "&%$")
= "Th&%$ &%$ a test string"
s may also be a cell array of strings, in which case the replacement is done for each
element and a cell array is returned.

See also: [regexprep|, page 81, [strfind], page 74, [findstr], page 73.

substr (s, offset) [Function File]

substr (s, offset, len) [Function File]
Return the substring of s which starts at character number offset and is len characters
long.

Chapter 5: Strings 79

Position numbering for offsets begins with 1. If offset is negative, extraction starts
that far from the end of the string.

If Ien is omitted, the substring extends to the end of S. A negative value for len
extracts to within Ien characters of the end of the string

Examples:

substr ("This is a test string", 6, 9)

= "is a test"

substr ("This is a test string", -11)

= '"test string"

substr ("This is a test string", -11, -7)

= "test"

This function is patterned after the equivalent function in Perl.

[s, e, te, m,

t, nm] = regexp (str, pat) [Loadable Function]

[...] = regexp (str, pat, "optl", ...) [Loadable Function]
Regular expression string matching. Search for pat in str and return the positions
and substrings of any matches, or empty values if there are none.

The matched pattern pat can include any of the standard regex operators, including:

*+ 7 {}
[...1[..
O

[

~$

Match any character

Repetition operators, representing

* Match zero or more times

+ Match one or more times

? Match zero or one times

{n} Match exactly n times

{n,} Match n or more times

{m,n} Match between m and n times
.1

List operators. The pattern will match any character listed between "["
and "]". If the first character is """ then the pattern is inverted and any
character except those listed between brackets will match.

Escape sequences defined below can also be used inside list operators.
For example, a template for a floating point number might be [-+.\d]+.

Grouping operator

Alternation operator. Match one of a choice of regular expressions. The
alternatives must be delimited by the grouping operator () above.

Anchoring operators. Requires pattern to occur at the start (7) or end
($) of the string.

In addition, the following escaped characters have special meaning. Note, it is recom-
mended to quote pat in single quotes, rather than double quotes, to avoid the escape
sequences being interpreted by Octave before being passed to regexp.

80

\b
\B
\w
\W
\<
\>
\s
\S
\d
\D

GNU Octave

Match a word boundary

Match within a word

Match any word character

Match any non-word character
Match the beginning of a word
Match the end of a word

Match any whitespace character
Match any non-whitespace character
Match any digit

Match any non-digit

The outputs of regexp default to the order given below

s
e
te
m
t

nm

sp

The start indices of each matching substring

The end indices of each matching substring

The extents of each matched token surrounded by (...) in pat
A cell array of the text of each match

A cell array of the text of each token matched

A structure containing the text of each matched named token, with
the name being used as the fieldname. A named token is denoted by
(?<name>...).

A cell array of the text not returned by match.

Particular output arguments, or the order of the output arguments, can be selected
by additional opt arguments. These are strings and the correspondence between the
output arguments and the optional argument are

‘start’ s
‘end’ e
‘tokenExtents’ te
‘match’ m
‘tokens’ t
‘names’ nm
"split’ sp

Additional arguments are summarized below.

‘once’

‘matchcase’

Return only the first occurrence of the pattern.

Make the matching case sensitive. (default)

Alternatively, use (7-1) in the pattern.

‘ignorecase’

Ignore case when matching the pattern to the string.

Alternatively, use (?7i) in the pattern.

Chapter 5: Strings 81

‘stringanchors’
Match the anchor characters at the beginning and end of the string.
(default)

Alternatively, use (?-m) in the pattern.

‘lineanchors’
Match the anchor characters at the beginning and end of the line.
Alternatively, use (?m) in the pattern.

‘dotall’ The pattern . matches all characters including the newline character.
(default)
Alternatively, use (7s) in the pattern.

‘dotexceptnewline’
The pattern . matches all characters except the newline character.
Alternatively, use (7-s) in the pattern.

‘literalspacing’
All characters in the pattern, including whitespace, are significant and
are used in pattern matching. (default)

Alternatively, use (7-x) in the pattern.

‘freespacing’
The pattern may include arbitrary whitespace and also comments begin-
ning with the character ‘#’.

Alternatively, use (7x) in the pattern.
See also: [regexpi|, page 81, [strfind], page 74, [regexprep], page 81.

[s, e, te, m, t, nm] = regexpi (str, pat) [Loadable Function]

[...] = regexpi (str, pat, "opt1", ...) [Loadable Function]
Case insensitive regular expression string matching. Search for pat in str and return
the positions and substrings of any matches, or empty values if there are none. See
[regexp], page 79, for details on the syntax of the search pattern.

See also: [regexp], page 79.
outstr = regexprep (string, pat, repstr) [Loadable Function]

outstr = regexprep (string, pat, repstr, "optl", ...) [Loadable Function]
Replace occurrences of pattern pat in string with repstr.

The pattern is a regular expression as documented for regexp. See [regexp|, page 79.

The replacement string may contain $i, which substitutes for the ith set of parentheses
in the match string. For example,

regexprep("Bill Dunn",’ (\w+) (\w+)’,’$2, $1°)
returns "Dunn, Bill"
Options in addition to those of regexp are

‘once’ Replace only the first occurrence of pat in the result.

‘warnings’
This option is present for compatibility but is ignored.

82 GNU Octave

See also: [regexp]|, page 79, [regexpi|, page 81, [strrep], page 78.

regexptranslate (op, s) [Function File]
Translate a string for use in a regular expression. This may include either wildcard
replacement or special character escaping. The behavior is controlled by op which
can take the following values

"wildcard"
The wildcard characters ., *, and ? are replaced with wildcards that are
appropriate for a regular expression. For example:

regexptranslate ("wildcard", "*.m")
= ".x\.m"
"escape" The characters $.7[], that have special meaning for regular expressions
are escaped so that they are treated literally. For example:

regexptranslate ("escape", "12.5")
= "12\.5"

See also: [regexp|, page 79, [regexpi], page 81, [regexprep], page 81.

untabify (t) [Function File]
untabify (t, tw) [Function File]
untabify (t, tw, deblank) [Function File]

Replace TAB characters in t, with spaces. The tab width is specified by tw, or defaults
to eight. The input, t, may be either a 2-D character array, or a cell array of character
strings. The output is the same class as the input.

If the optional argument deblank is true, then the spaces will be removed from the
end of the character data.

The following example reads a file and writes an untabified version of the same file
with trailing spaces stripped.

fid = fopen ("tabbed_script.m");

text = char (fread (fid, "uchar")’);

fclose (fid);

fid = fopen ("untabified_script.m", "w");

text = untabify (strsplit (text, "\n"), 8, true);

fprintf (fid, "%s\n", text{:1});

fclose (fid);

See also: [strjust], page 85, [strsplit], page 76, [deblank], page 73.

5.6 String Conversions

Octave supports various kinds of conversions between strings and numbers. As an example,
it is possible to convert a string containing a hexadecimal number to a floating point number.
hex2dec ("FF")
= ans = 255

bin2dec (s) [Function File]
Return the decimal number corresponding to the binary number represented by the
string s. For example:

Chapter 5: Strings 83

bin2dec ("1110")
= 14

Spaces are ignored during conversion and may be used to make the binary number
more readable.

bin2dec ("1000 0001")
= 129

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2bin], page 83, [base2dec|, page 84, [hex2dec], page 83.

dec2bin (d, len) [Function File]
Return a binary number corresponding to the non-negative integer d, as a string of
ones and zeros. For example:

dec2bin (14)
= "1110"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [bin2dec|, page 82, [dec2base|, page 84, [dec2hex], page 83.

dec2hex (d, len) [Function File]
Return the hexadecimal string corresponding to the non-negative integer d. For
example:
dec2hex (2748)
= "ABC"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

The optional second argument, len, specifies the minimum number of digits in the
result.

See also: [hex2dec], page 83, [dec2base], page 84, [dec2bin], page 83.

hex2dec (s) [Function File]
Return the integer corresponding to the hexadecimal number represented by the string
s. For example:

hex2dec ("12B")
= 299

hex2dec ("12b")
= 299

If s is a string matrix, return a column vector with one converted number per row of
s; Invalid rows evaluate to NaN.

84 GNU Octave

If s is a cell array of strings, return a column vector with one converted number per
cell element in s.

See also: [dec2hex]|, page 83, [base2dec], page 84, [bin2dec], page 82.

dec2base (d, base) [Function File]
dec2base (d, base, len) [Function File]
Return a string of symbols in base base corresponding to the non-negative integer d.

dec2base (123, 3)
= "11120"

If d is a matrix or cell array, return a string matrix with one row per element in d,
padded with leading zeros to the width of the largest value.

If base is a string then the characters of base are used as the symbols for the digits
of d. Space (’’) may not be used as a symbol.

dec2base (123, "aei")
= "eeeia"
The optional third argument, len, specifies the minimum number of digits in the
result.

See also: [base2dec], page 84, [dec2bin], page 83, [dec2hex], page 83.

base2dec (s, base) [Function File]
Convert s from a string of digits in base base to a decimal integer (base 10).

base2dec ("11120", 3)
= 123

If s is a string matrix, return a column vector with one value per row of s. If a row
contains invalid symbols then the corresponding value will be NaN.

If 5 is a cell array of strings, return a column vector with one value per cell element
in s.

If base is a string, the characters of base are used as the symbols for the digits of s.
Space (’) may not be used as a symbol.

base2dec ("yyyzx", "xyz")
= 123

See also: [dec2base], page 84, [bin2dec|, page 82, [hex2dec], page 83.

s = num2hex (n) [Loadable Function]
Typecast a double precision number or vector to a 16 character hexadecimal string
of the IEEE 754 representation of the number. For example:

num2hex ([-1, 1, e, Inf, NaN, NA]);

= "b£f£0000000000000
3££0000000000000
4005bf0a8b145769
7££0000000000000
f££8000000000000
7££00000000007a2"

See also: [hex2num], page 85, [hex2dec|, page 83, [dec2hex], page 83.

Chapter 5: Strings 85

n = hex2num (s) [Loadable Function]
Typecast the 16 character hexadecimal character string to an IEEE 754 double preci-
sion number. If fewer than 16 characters are given the strings are right padded with
'0” characters.

Given a string matrix, hex2num treats each row as a separate number.
hex2num (["4005bf0a8b145769";"4024000000000000"])
= [2.7183; 10.000]

See also: [num2hex], page 84, [hex2dec|, page 83, [dec2hex], page 83.

str2double (s) [Built-in Function]
Convert a string to a real or complex number.

The string must be in one of the following formats where a and b are real numbers
and the complex unit is ’i’ or ’j’:

e a+ bi

e a+ b*i

e a+i*b

e bi+a

e b*i+a

e i*b+a
If present, a and/or b are of the form [+-]d[,.]d[[eE][+-]d] where the brackets indicate

optional arguments and ’d’ indicates zero or more digits. The special input values
Inf, NaN, and NA are also accepted.

s may also be a character matrix, in which case the conversion is repeated for each
row. Or s may be a cell array of strings, in which case each element is converted and
an array of the same dimensions is returned.

str2double returns NaN for elements of s which cannot be converted.
str2double can replace str2num, and it avoids the security risk of using eval on
unknown data.

See also: [str2num], page 86.

strjust (s) [Function File]
strjust (s, pos) [Function File]
Return the text, s, justified according to pos, which may be ‘"left"’, ‘"center"’, or

‘"right"’. If pos is omitted it defaults to ‘"right"’.

Null characters are replaced by spaces. All other character data are treated as non-
white space.

Example:
strjust ([nan ; "ap" ; "abc" ; “abcd"])
=
n a“
n abll
n abcll
"abcd"

See also: [deblank]|, page 73, [strrep], page 78, [strtrim], page 73, [untabify], page 82.

86 GNU Octave

x = str2num (s) [Function File]
[x, state] = str2num (s) [Function File]
Convert the string (or character array) s to a number (or an array). Examples:

str2num ("3.141596")
= 3.141596

str2num (["1, 2, 3"; "4, 5, 6"])
=1 2 3
4 5 6

The optional second output, state, is logically true when the conversion is successful.
If the conversion fails the numeric output, x, is empty and state is false.

Caution: As str2num uses the eval function to do the conversion, str2num will
execute any code contained in the string s. Use str2double for a safer and faster
conversion.

For cell array of strings use str2double.

See also: [str2double], page 85, [eval], page 141.

toascii (s) [Mapping Function]
Return ASCII representation of s in a matrix. For example:

toascii ("ASCII")
= [65, 83, 67, 73, 73]

See also: [char]|, page 67.

tolower (s) [Mapping Function]

lower (s) [Mapping Function]
Return a copy of the string or cell string s, with each uppercase character replaced by
the corresponding lowercase one; non-alphabetic characters are left unchanged. For
example:

tolower ("MiXeD cAsE 123")
= "mixed case 123"

See also: [toupper|, page 86.

toupper (s) [Mapping Function]

upper (s) [Mapping Function]
Return a copy of the string or cell string s, with each lowercase character replaced by
the corresponding uppercase one; non-alphabetic characters are left unchanged. For
example:

toupper ("MiXeD cAsE 123")
= "MIXED CASE 123"

See also: [tolower]|, page 86.

do_string_escapes (string) [Built-in Function]
Convert special characters in string to their escaped forms.

Chapter 5: Strings 87

undo_string_escapes (s) [Built-in Function]
Convert special characters in strings back to their escaped forms. For example, the
expression
bell = "\a";

assigns the value of the alert character (control-g, ASCII code 7) to the string variable
bell. If this string is printed, the system will ring the terminal bell (if it is possible).
This is normally the desired outcome. However, sometimes it is useful to be able to
print the original representation of the string, with the special characters replaced by
their escape sequences. For example,

octave:13> undo_string_escapes (bell)
ans = \a

replaces the unprintable alert character with its printable representation.

5.7 Character Class Functions

Octave also provides the following character class test functions patterned after the functions
in the standard C library. They all operate on string arrays and return matrices of zeros and
ones. Elements that are nonzero indicate that the condition was true for the corresponding
character in the string array. For example:

isalpha ("!Q@WERT"Y&")
:> [O’ 1, O) 1’ 1’ 1’ 1’ O) 1’ O]

isalnum (s) [Mapping Function]
Return a logical array which is true where the elements of s are letters or digits and
false where they are not. This is equivalent to (isalpha (s) | isdigit (s)).

See also: [isalphal, page 87, [isdigit], page 88, [ispunct], page 88, [isspace], page 88,
[iscntrl], page 88.

isalpha (s) [Mapping Function]
Return a logical array which is true where the elements of s are letters and false where
they are not. This is equivalent to (islower (s) | isupper (s)).

See also: [isdigit], page 88, [ispunct]|, page 88, [isspace], page 88, [iscntrl], page 88,
[isalnum], page 87, [islower], page 87, [isupper], page 88.

isletter (s) [Function File]
Return a logical array which is true where the elements of s are letters and false where
they are not. This is an alias for the isalpha function.

See also: [isalphal], page 87, [isdigit], page 88, [ispunct], page 88, [isspace], page 88,
[iscntrl], page 88, [isalnum], page 87.

islower (s) [Mapping Function]
Return a logical array which is true where the elements of s are lowercase letters and
false where they are not.

See also: [isupper]|, page 88, [isalpha], page 87, [isletter], page 87, [isalnum], page 87.

88 GNU Octave

isupper (s) [Mapping Function]
Return a logical array which is true where the elements of s are uppercase letters and
false where they are not.

See also: [islower|, page 87, [isalphal, page 87, [isletter], page 87, [isalnum]|, page 87.

isdigit (s) [Mapping Function]
Return a logical array which is true where the elements of s are decimal digits (0-9)
and false where they are not.

See also: [isxdigit]|, page 88, [isalpha], page 87, [isletter], page 87, [ispunct]|, page 88,
[isspace], page 88, [iscntrl], page 88.

isxdigit (s) [Mapping Function]
Return a logical array which is true where the elements of s are hexadecimal digits
(0-9 and a-fA-F).

See also: [isdigit], page 88.

ispunct (s) [Mapping Function]
Return a logical array which is true where the elements of s are punctuation characters
and false where they are not.

See also: [isalphal, page 87, [isdigit], page 88, [isspace], page 88, [iscntrl], page 88.

isspace (s) [Mapping Function]
Return a logical array which is true where the elements of s are whitespace characters
(space, formfeed, newline, carriage return, tab, and vertical tab) and false where they
are not.

See also: [iscntrl], page 88, [ispunct], page 88, [isalphal, page 87, [isdigit], page 88.
iscntrl (s) [Mapping Function]

Return a logical array which is true where the elements of s are control characters
and false where they are not.

See also: [ispunct], page 88, [isspace|, page 88, [isalpha], page 87, [isdigit], page 88.
isgraph (s) [Mapping Function]

Return a logical array which is true where the elements of s are printable characters
(but not the space character) and false where they are not.

See also: [isprint], page 88.
isprint (s) [Mapping Function]

Return a logical array which is true where the elements of s are printable characters
(including the space character) and false where they are not.

See also: [isgraph], page 88.
isascii (s) [Mapping Function]

Return a logical array which is true where the elements of s are ASCII characters (in
the range 0 to 127 decimal) and false where they are not.

Chapter 5: Strings 89

isstrprop (str, prop) [Function File]
Test character string properties. For example:

isstrprop ("abc123", "alpha")
= [1, 1, 1, 0, 0, O]

If str is a cell array, isstrpop is applied recursively to each element of the cell array.

Numeric arrays are converted to character strings.

The second argument prop must be one of

llalphall

"alnum"

True for characters that are alphabetic (letters).

"alphanum"

"lower"
"upper"
"digit"

"xdigit"

"space"
"wspace"

llpunctll

"centrl"

" gI.aphn
"graphic"

"print"

"ascii"

True for characters that are alphabetic or digits.
True for lowercase letters.

True for uppercase letters.

True for decimal digits (0-9).

True for hexadecimal digits (a-fA-F0-9).

True for whitespace characters (space, formfeed, newline, carriage return,
tab, vertical tab).

True for punctuation characters (printing characters except space or letter
or digit).

True for control characters.

True for printing characters except space.
True for printing characters including space.

True for characters that are in the range of ASCII encoding.

See also: [isalpha|, page 87, [isalnum], page 87, [islower]|, page 87, [isupper], page 88,
[isdigit], page 88, [isxdigit], page 88, [isspace], page 88, [ispunct], page 88, [iscntrl],
page 88, [isgraph|, page 88, [isprint], page 88, [isascii], page 88.

Chapter 6: Data Containers 91

6 Data Containers

Octave includes support for two different mechanisms to contain arbitrary data types in
the same variable. Structures, which are C-like, and are indexed with named fields, and
cell arrays, where each element of the array can have a different data type and or shape.
Multiple input arguments and return values of functions are organized as another data
container, the comma separated list.

6.1 Structures

Octave includes support for organizing data in structures. The current implementation
uses an associative array with indices limited to strings, but the syntax is more like C-style
structures.

6.1.1 Basic Usage and Examples

Here are some examples of using data structures in Octave.

Elements of structures can be of any value type. For example, the three expressions

x.a =1;
x.b = [1, 2; 3, 4];
x.c = "string";

create a structure with three elements. The ‘.’ character separates the structure name from
the field name and indicates to Octave that this variable is a structure. To print the value
of the structure you can type its name, just as for any other variable:

X
= X =
{
a=1
b=
1 2
4
c = string
}

Note that Octave may print the elements in any order.

Structures may be copied just like any other variable:

92 GNU Octave

y =X
=y =
{
a=1
b=
1 2
4
c = string

Since structures are themselves values, structure elements may reference other structures.
The following statements change the value of the element b of the structure x to be a data
structure containing the single element d, which has a value of 3.

x.b
= ans =

¢ = string

Note that when Octave prints the value of a structure that contains other structures,
only a few levels are displayed. For example:

Chapter 6: Data Containers 93

a.b.c.d.e = 1;
a
= a =
{
b =
{
c =
{
1x1 struct array containing the fields:
d: 1x1 struct
b
X
b

This prevents long and confusing output from large deeply nested structures. The number
of levels to print for nested structures may be set with the function struct_levels_to_
print, and the function print_struct_array_contents may be used to enable printing
of the contents of structure arrays.

val = struct_levels_to_print () [Built-in Function]

old_val = struct_levels_to_print (new_val) [Built-in Function]

struct_levels_to_print (new_val, "local") [Built-in Function]
Query or set the internal variable that specifies the number of structure levels to
display.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

val = print_struct_array_contents () [Built-in Function]
old_val = print_struct_array_contents (new_val) [Built-in Function]
print_struct_array_contents (new_val, "local") [Built-in Function]

Query or set the internal variable that specifies whether to print struct array contents.
If true, values of struct array elements are printed. This variable does not affect scalar
structures. Their elements are always printed. In both cases, however, printing will
be limited to the number of levels specified by struct_levels_to_print.

When called from inside a function with the "local" option, the variable is changed
locally for the function and any subroutines it calls. The original variable value is
restored when exiting the function.

Functions can return structures. For example, the following function separates the real
and complex parts of a matrix and stores them in two elements of the same structure
variable.

function y = £ (x)
y.re = real (x);
y.im = imag (x);

endfunction

94 GNU Octave

When called with a complex-valued argument, £ returns the data structure containing
the real and imaginary parts of the original function argument.
f (rand (2) + rand (2) * I)
= ans =
{

im

0.26475 0.14828
0.18436 0.83669

re

0.040239 0.242160
0.238081 0.402523

}

Function return lists can include structure elements, and they may be indexed like any
other variable. For example:

[x.u, x.8(2:3,2:3), x.v] =svd ([1, 2; 3, 4]);

X
= x =
{
u=
-0.40455 -0.91451
-0.91451 0.40455
S:
0.00000 0.00000 0.00000
0.00000 5.46499 0.00000
0.00000 0.00000 0.36597
v=
-0.57605 0.81742
-0.81742 -0.57605
}

It is also possible to cycle through all the elements of a structure in a loop, using a
special form of the for statement (see Section 10.5.1 [Looping Over Structure Elements],
page 151).

6.1.2 Structure Arrays

A structure array is a particular instance of a structure, where each of the fields of the
structure is represented by a cell array. Each of these cell arrays has the same dimensions.

Chapter 6: Data Containers 95

Conceptually, a structure array can also be seen as an array of structures with identical
fields. An example of the creation of a structure array is

x(1).a = "stringl";
x(2).a = "string2";
x(1).b = 1;
x(2).b = 2;

which creates a 2-by-1 structure array with two fields. Another way to create a structure
array is with the struct function (see Section 6.1.3 [Creating Structures|, page 96). As
previously, to print the value of the structure array, you can type its name:

X
= x =
{
1x2 struct array containing the fields:
a
b
b

Individual elements of the structure array can be returned by indexing the variable like
x (1), which returns a structure with two fields:

x(1)
= ans =
{
a = stringl
b= 1
iy

Furthermore, the structure array can return a comma separated list of field values (see
Section 6.3 [Comma Separated Lists], page 110), if indexed by one of its own field names.
For example:

=
ans
ans

stringl
string?2

Here is another example, using this comma separated list on the left-hand side of an
assignment:

[x.a] = deal("new stringl", "new string2");
x(1).a

= ans = new stringl
x(2).a

= ans = new string2

Just as for numerical arrays, it is possible to use vectors as indices (see Section 8.1 [Index
Expressions], page 123):

96 GNU Octave

x(3:4) = x(1:2);
[x([1,3]).a] = deal("other stringl", "other string2");
X.a
=
ans = other stringl
ans = new string2
ans = other string2
ans = new string?2
The function size will return the size of the structure. For the example above
size(x)
= ans =

1 4
Elements can be deleted from a structure array in a similar manner to a numerical array,
by assigning the elements to an empty matrix. For example
in = struct ("calll", {x, Inf, "last"},
"call2", {x, Inf, "first"})

= in =
{
1x3 struct array containing the fields:
calll
call2
b
in(1) = [1;
in.calll
=
ans = Inf

ans = last

6.1.3 Creating Structures

Besides the index operator ".", Octave can use dynamic naming "(var)" or the struct
function to create structures. Dynamic naming uses the string value of a variable as the
field name. For example:

a = "field2";
x.a =1;
x.(a) = 2;
b4
= X =
{
a= 1
field2 = 2
}

More realistically, all of the functions that operate on strings can be used to build the
correct field name before it is entered into the data structure.

Chapter 6: Data Containers 97

names ["Bill"; "Mary"; "John"];
ages [37; 26; 31];
for i = 1:rows (names)

database. (names(i,:)) = ages(i);

endfor
database
= database =
{
Bill = 37
Mary = 26
John = 31
+

The third way to create structures is the struct command. struct takes pairs of
arguments, where the first argument in the pair is the fieldname to include in the structure
and the second is a scalar or cell array, representing the values to include in the structure
or structure array. For example:

struct ("fieldl", 1, "field2", 2)
= ans =
{
fieldl
field2

nn
N =

If the values passed to struct are a mix of scalar and cell arrays, then the scalar argu-
ments are expanded to create a structure array with a consistent dimension. For example:

s = struct ("field1l", {1, "ome"}, "field2", {2, "two"},
"field3", 3);
s.fieldl
=
ans = 1
ans = one

s.field2
=

ans = two

s.field3
=
ans = 3
ans 3

If you want to create a struct which contains a cell array as an individual field, you must
wrap it in another cell array as shown in the following example:

98 GNU Octave

struct ("fieldl", {{1, "one"}}, "field2", 2)

= ans =

{
fieldl =

{
[1,1] = 1
[1,2] = one

}
field2 = 2

}

struct ("field", value, "field", value, ...) [Built-in Function]

Create a structure and initialize its value.

If the values are cell arrays, create a structure array and initialize its values. The
dimensions of each cell array of values must match. Singleton cells and non-cell values
are repeated so that they fill the entire array. If the cells are empty, create an empty
structure array with the specified field names.

If the argument is an object, return the underlying struct.

The function isstruct can be used to test if an object is a structure or a structure
array.

isstruct (x) [Built-in Function]
Return true if x is a structure or a structure array.

See also: [ismatrix], page 59, [iscell], page 103, [isa], page 37.

6.1.4 Manipulating Structures

Other functions that can manipulate the fields of a structure are given below.

nfields (s) [Built-in Function]
Return the number of fields of the structure s.

fieldnames (struct) [Built-in Function]
Return a cell array of strings naming the elements of the structure struct. It is an
error to call fieldnames with an argument that is not a structure.

isfield (x, name) [Built-in Function]
Return true if the x is a structure and it includes an element named name. If name
is a cell array of strings then a logical array of equal dimension is returned.

[vi, ...] = getfield (s, key, ...) [Function File]
Extract a field from a structure (or a nested structure). For example:
ss(1,2).fd(3).b = 5;
getfield (ss, {1,2}, "fd", {3}, "b")
= 5
Note that the function call in the previous example is equivalent to the expression

Chapter 6: Data Containers 99

i1 = {1,2}; i2 = "fd"; i3 = {3}; id= "b";
ss(11{:}). (i2) (i3{:}). (i4)
= 5

See also: [setfield], page 99, [rmfield], page 99, [isfield], page 98, [isstruct], page 98,
[fieldnames|, page 98, [struct], page 98.

[k1, ..., v1] = setfield (s, k1, v1,...) [Function File]
Set a field member in a (nested) structure array. For example:
oo(1,1).f0 = 1;
oo = setfield (oo, {1,2}, "fd", {3}, "b", 6);
00(1,2).£d(3).b ==
= ans =1
Note that the same result as in the above example could be achieved by:
il = {1,2}; i2 = "fd"; i3 = {3}; i4 = "b";
oo(i1{:}).(12) (13{:}).(i4) ==
= ans =1

See also: [getfield], page 98, [rmfield], page 99, [isfield], page 98, [isstruct], page 98,
[fieldnames], page 98, [struct], page 98.

rmfield (s, f) [Built-in Function]
Return a copy of the structure (array) s with the field f removed. If f is a cell array
of strings or a character array, remove the named fields.

See also: [cellstr], page 109, [iscellstr], page 109, [setfield], page 99.
[t, p] = orderfields (s1) [Function File]

[t, pl orderfields (s1, s2) [Function File]
Return a copy of s1 with fields arranged alphabetically or as specified by s2.

Given one struct, arrange field names in sl alphabetically.

If the second argument is a struct, arrange field names in sl as they appear in s2.
The second argument may also specify the order in a permutation vector or a cell
array of strings containing the fieldnames of s1 in the desired order.

The optional second output argument p is assigned the permutation vector which
converts the original name order into the new name order.

Examples:

s = struct("d", 4, "b", 2, "a", 1, "c", 3);
t1 = orderfields (s)
= t1 =
{

o 0 T W
o
DS W N -

100 GNU Octave

t = struct("d", {F}, "c", {3}, "b", "a", {});
t2 = orderfields (s, t)

= t2 =
{
d= 4
c= 3
b= 2
a= 1
}
t3 = orderfields (s, [3, 2, 4, 11);
= t3 =
{
a= 1
b= 2
c= 3
d= 4

[t4, p] = orderfields (s, {"d", "c", "b", "a"})
= t4 =
{

[\ o i N o
[
=N WD

(o]

W N -

See also: [getfield], page 98, [rmfield], page 99, [isfield], page 98, [isstruct], page 98,
[fieldnames], page 98, [struct], page 98.

substruct (type, subs, ...) [Function File]
Create a subscript structure for use with subsref or subsasgn. For example:

Chapter 6: Data Containers 101

idx = substruct ("O", {3, ":"})
=
idx =
{
type
subs

{

O

[1,1] =
[1,2] =

|
T

}
}
x=1[1, 2, 3; 4, 5, 6; 7, 8, 9];
subsref (x, idx)
=7 8 9

See also: [subsref], page 599, [subsasgn|, page 600.

6.1.5 Processing Data in Structures

The simplest way to process data in a structure is within a for loop (see Section 10.5.1
[Looping Over Structure Elements], page 151). A similar effect can be achieved with the
structfun function, where a user defined function is applied to each field of the structure.
See [doc-structfun], page 406.

Alternatively, to process the data in a structure, the structure might be converted to
another type of container before being treated.

struct2cell (S) [Built-in Function]
Create a new cell array from the objects stored in the struct object. If f is the
number of fields in the structure, the resulting cell array will have a dimension vector
corresponding to [F size(S)]. For example

s = struct(’name’, {’Peter’, ’Hannah’, ’Robert’},
’age’, {23, 16, 3});
¢ = struct2cell(s)
= ¢ = {1x1x3 Cell Array}
c(1,1,:)(:)

[1,1] = Peter
[2,1] = Hannah
[3,1] = Robert

}
c(2,1,:)()
= ans =
{
[1,1] = 23
[2,1] = 16
[3,1] = 3

}

102 GNU Octave

See also: [cell2struct], page 110, [fieldnames], page 98.

6.2 Cell Arrays

It can be both necessary and convenient to store several variables of different size or type
in one variable. A cell array is a container class able to do just that. In general cell arrays
work just like N-dimensional arrays with the exception of the use of ‘{’ and ‘}’ as allocation
and indexing operators.

6.2.1 Basic Usage of Cell Arrays

As an example, the following code creates a cell array containing a string and a 2-by-2
random matrix

¢ = {"a string", rand(2, 2)};
To access the elements of a cell array, it can be indexed with the { and } operators. Thus,
the variable created in the previous example can be indexed like this:

c{1}

= ans = a string

As with numerical arrays several elements of a cell array can be extracted by indexing with
a vector of indexes

c{1:2}
= ans = a string
= ans

0.593993 0.627732
0.377037 0.033643

The indexing operators can also be used to insert or overwrite elements of a cell array.
The following code inserts the scalar 3 on the third place of the previously created cell array

c{3} =3
= ¢ =
{
[1,1] = a string
[1,2] =
0.593993 0.627732
0.377037 0.033643
[1,3] = 3
}

Details on indexing cell arrays are explained in Section 6.2.3 [Indexing Cell Arrays],
page 106.

In general nested cell arrays are displayed hierarchically as in the previous example.
In some circumstances it makes sense to reference them by their index, and this can be
performed by the celldisp function.

Chapter 6: Data Containers 103

celldisp (c, name) [Function File]
Recursively display the contents of a cell array. By default the values are displayed
with the name of the variable c. However, this name can be replaced with the variable
name. For example:

c = {1, 2, {31, 32}};
celldisp (c, "b")
=
b{1}
1
b{2}
2
b{3}{1}
31
b{3}{2}
32

See also: [disp|, page 203.

To test if an object is a cell array, use the iscell function. For example:

iscell(c)
= ans =1
iscell(3)
= ans = 0
iscell (x) [Built-in Function]

Return true if x is a cell array object.

See also: [ismatrix], page 59, [isstruct], page 98, [iscellstr], page 109, [isa], page 37.

6.2.2 Creating Cell Array

The introductory example (see Section 6.2.1 [Basic Usage of Cell Arrays], page 102) showed
how to create a cell array containing currently available variables. In many situations,
however, it is useful to create a cell array and then fill it with data.

The cell function returns a cell array of a given size, containing empty matrices. This
function is similar to the zeros function for creating new numerical arrays. The following
example creates a 2-by-2 cell array containing empty matrices

c = cell(2,2)

= Cc =
{
(1,11 = [1(0x0)
(2,11 = [1(0x0)
[1,2] = [1(0x0)
[2,2] = [1(0x0)

104 GNU Octave

Just like numerical arrays, cell arrays can be multi-dimensional. The cell function
accepts any number of positive integers to describe the size of the returned cell array. It is
also possible to set the size of the cell array through a vector of positive integers. In the
following example two cell arrays of equal size are created, and the size of the first one is
displayed

cl = cell(3, 4, 5);
c2 = cell([3, 4, 5]);
size(cl)
= ans =
3 4 5

As can be seen, the [doc-size], page 42 function also works for cell arrays. As do other
functions describing the size of an object, such as [doc-length|, page 41, [doc-numel], page 41,
[doc-rows], page 41, and [doc-columns]|, page 41.

cell (n) [Built-in Function]
cell (m, n) [Built-in Function]
cell (m,n k, ...) [Built-in Function]
cell (mn ...]) [Built-in Function]

Create a new cell array object. If invoked with a single scalar integer argument, return
a square NxN cell array. If invoked with two or more scalar integer arguments, or a
vector of integer values, return an array with the given dimensions.

As an alternative to creating empty cell arrays, and then filling them, it is possible to
convert numerical arrays into cell arrays using the num2cell, mat2cell and cellslices
functions.

C = num2cell (4) [Loadable Function]

C = num2cell (4, dim) [Loadable Function]
Convert the numeric matrix A to a cell array. If dim is defined, the value C is of
dimension 1 in this dimension and the elements of A are placed into C in slices. For
example:

Chapter 6: Data Containers 105

num2cell([1,2;3,4])
= ans =
{
[1,1]
[2,1] =
[1,2] =
[2,2]
}
num2cell([1,2;3,4],1)
= ans =
{
[1,1]
1
3
[1,2]
2
4

SN W

}
See also: [mat2cell], page 105.

mat2cell (4, m, n) [Loadable Function]
mat2cell (4,d1,d2 ...) [Loadable Function]
mat2cell (4, r) [Loadable Function]
Convert the matrix A to a cell array. If A is 2-D, then it is required that sum (m)
== gize (4, 1) and sum (n) == size (4, 2). Similarly, if A is multi-dimensional
and the number of dimensional arguments is equal to the dimensions of A, then it is
required that sum (di) == size (4, i).

aQaQa
Il

Given a single dimensional argument r, the other dimensional arguments are assumed
to equal size (4,1).

An example of the use of mat2cell is
mat2cell (reshape(1:16,4,4),[3,1],[3,11)

= {
[1,1] =
1 5 9
2 6 10
3 7 11
[(2,1] =
4 8 12
[1,2] =
13

14

106 GNU Octave

15

[2,2] = 16
b

See also: [num2cell], page 104, [cell2mat], page 109.

sl = cellslices (x, 1b, ub, dim) [Loadable Function]
Given an array x, this function produces a cell array of slices from the array deter-
mined by the index vectors Ib, ub, for lower and upper bounds, respectively. In other
words, it is equivalent to the following code:

n = length (1b);
sl = cell (1, n);
for i = 1:length (1b)
s1{i} = x(:,...,1b(1):ub(d),...,:);
endfor

The position of the index is determined by dim. If not specified, slicing is done along
the first non-singleton dimension.

See also: [cell2mat], page 109, [cellindexmat], page 108, [cellfun], page 404.

6.2.3 Indexing Cell Arrays

As shown in see Section 6.2.1 [Basic Usage of Cell Arrays|, page 102 elements can be
extracted from cell arrays using the ‘{’ and ‘}’ operators. If you want to extract or access
subarrays which are still cell arrays, you need to use the ‘(" and ‘)’ operators. The following
example illustrates the difference:

c = {Illll, "2"’ IISII; |Iall, "bll’ "C"; ||4ll, "5“, ll6"};

c{2,3}
= ans = ¢
c(2,3)
= ans =
{
[1,1] = ¢
}

So with ‘{}’ you access elements of a cell array, while with ‘()’ you access a sub array of a
cell array.

Using the ‘C and ‘)’ operators, indexing works for cell arrays like for multi-dimensional
arrays. As an example, all the rows of the first and third column of a cell array can be set
to 0 with the following command:

Chapter 6: Data Containers 107

c(:, [1, 3]) = {0}
= =
{
[1,1] =
[2,1] =
[3,1] =
[1,2] =
[2,2] = 10
[3,2] = 20
[1,3] =
[2,3] =
[3,3] =0
}

Note, that the above can also be achieved like this:

c(:, [1, 31) = 0;

N O O O

o O

Here, the scalar ‘0’ is automatically promoted to cell array ‘{0}’ and then assigned to the
subarray of c.

To give another example for indexing cell arrays with ()’ you can exchange the first
and the second row of a cell array as in the following command:

c =41, 2, 3; 4, 5, 6};
c(l1, 21, :) = c([2, 11,)
= =
{
[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =
}

Accessing multiple elements of a cell array with the ‘{” and ‘}’ operators will result in
a comma-separated list of all the requested elements (see Section 6.3 [Comma Separated
Lists], page 110). Using the ‘{’ and ‘}’ operators the first two rows in the above example
can be swapped back like this:

[c{[1,2], :}] = deal(c{[2, 11, :})
=

W o N O~ s

{
[1,1] =
[2,1] =
[1,2] =
[2,2] =
[1,3] =
[2,3] =

D WO N

108 GNU Octave

As for struct arrays and numerical arrays, the empty matrix ‘[]’ can be used to delete
elements from a cell array:

X = {||1ll’ 1I2||; IISII, ||4ll};

x(1,) =[]
= X =
{
[1,1] = 3
[1,2] = 4
}

The following example shows how to just remove the contents of cell array elements but
not delete the space for them:

X = {lllll, ||2||; Il3|l, ||4ll};

x{1, 3 = 1[I
= x =
{
[1,1] = [1(0x0)
[2,1] = 3
[1,2] = [](0x0)
[2,2] = 4
}

The indexing operations operate on the cell array and not on the objects within the cell
array. By contrast, cellindexmat applies matrix indexing to the objects within each cell
array entry and returns the requested values.

y = cellindexmat (x, varargin) [Loadable Function]
Given a cell array of matrices x, this function computes

Y = cell (size (X));
for i = 1:numel (X)

Y{i} = X{i}(varargin{:1});
endfor

See also: [cellslices], page 106, [cellfun], page 404.

6.2.4 Cell Arrays of Strings

One common use of cell arrays is to store multiple strings in the same variable. It is also
possible to store multiple strings in a character matrix by letting each row be a string. This,
however, introduces the problem that all strings must be of equal length. Therefore, it is
recommended to use cell arrays to store multiple strings. For cases, where the character
matrix representation is required for an operation, there are several functions that convert
a cell array of strings to a character array and back. char and strvcat convert cell arrays
to a character array (see Section 5.3.1 [Concatenating Strings|, page 65), while the function
cellstr converts a character array to a cell array of strings:

Chapter 6: Data Containers 109

a = ["hello"; "world"];
c = cellstr (a)

= c =
{
[1,1] = hello
[2,1] = world
}
cellstr (string) [Built-in Function]

Create a new cell array object from the elements of the string array string.

One further advantage of using cell arrays to store multiple strings is that most functions
for string manipulations included with Octave support this representation. As an example,
it is possible to compare one string with many others using the strcmp function. If one
of the arguments to this function is a string and the other is a cell array of strings, each
element of the cell array will be compared to the string argument:

¢ = {"hello", "world"};
strcmp ("hello", c)
= ans =
1 0

The following string functions support cell arrays of strings: char, strvcat, strcat (see
Section 5.3.1 [Concatenating Strings|, page 65), strcmp, strncmp, strcmpi, strncmpi (see
Section 5.4 [Comparing Strings|, page 70), str2double, deblank, strtrim, strtrunc,
strfind, strmatch, , regexp, regexpi (see Section 5.5 [Manipulating Strings|, page 72)
and str2double (see Section 5.6 [String Conversions|, page 82).

The function iscellstr can be used to test if an object is a cell array of strings.

iscellstr (cell) [Built-in Function]
Return true if every element of the cell array cell is a character string.

See also: [ischar|, page 64.

6.2.5 Processing Data in Cell Arrays

Data that is stored in a cell array can be processed in several ways depending on the actual
data. The simplest way to process that data is to iterate through it using one or more
for loops. The same idea can be implemented more easily through the use of the cellfun
function that calls a user-specified function on all elements of a cell array. See [doc-cellfun],
page 404.

An alternative is to convert the data to a different container, such as a matrix or a data
structure. Depending on the data this is possible using the cell2mat and cell2struct
functions.

m = cell2mat (c) [Function File]
Convert the cell array ¢ into a matrix by concatenating all elements of ¢ into a
hyperrectangle. Elements of ¢ must be numeric, logical or char matrices, or cell
arrays, and cat must be able to concatenate them together.

See also: [mat2cell], page 105, [num2cell], page 104.

110 GNU Octave

cell2struct (cell, fields, dim) [Built-in Function]
Convert cell to a structure. The number of fields in fields must match the number of
elements in cell along dimension dim, that is numel (fields) == size (cell, dim).

If dim is omitted, a value of 1 is assumed.

A = cell2struct ({’Peter’, ’Hannah’, ’Robert’;
185, 170, 1687},
{’Name’,’Height’}, 1);

ACD
= ans =
{
Name = Peter
Height = 185
}

6.3 Comma Separated Lists

Comma separated lists® are the basic argument type to all Octave functions - both for input
and return arguments. In the example

max (a, b)

‘a, b’ is a comma separated list. Comma separated lists can appear on both the right and
left hand side of an assignment. For example

x=[1010011; 000000 7];
[i, j] = find (x, 2, "last");

Here, ‘x, 2, "last"’ is a comma separated list constituting the input arguments of find.
find returns a comma separated list of output arguments which is assigned element by
element to the comma separated list ‘i, j .

Another example of where comma separated lists are used is in the creation of a new
array with [] (see Section 4.1 [Matrices|, page 46) or the creation of a cell array with {}
(see Section 6.2.1 [Basic Usage of Cell Arrays|, page 102). In the expressions

a = [1’ 2: 3’ 4];
c =4{4, 5, 6, 7};

both ‘1, 2, 3, 4’ and ‘4, 5, 6, 7’ are comma separated lists.

Comma separated lists cannot be directly manipulated by the user. However, both
structure arrays and cell arrays can be converted into comma separated lists, and thus used
in place of explicitly written comma separated lists. This feature is useful in many ways,
as will be shown in the following subsections.

6.3.1 Comma Separated Lists Generated from Cell Arrays

As has been mentioned above (see Section 6.2.3 [Indexing Cell Arrays|, page 106), elements
of a cell array can be extracted into a comma separated list with the { and } operators. By
surrounding this list with [and], it can be concatenated into an array. For example:

1 Comma-separated lists are also sometimes informally referred to as cs-lists.

Chapter 6: Data Containers 111

a=A{1, [2, 3], 4, 5, 6};
b = [a{1:4}]
= b =
1 2 3 4 5
Similarly, it is possible to create a new cell array containing cell elements selected with
{}. By surrounding the list with ‘{’ and ‘}’ a new cell array will be created, as the following
example illustrates:
a = {1, rand(2, 2), "three"};
b={a{ 1, 31 }}
= b =
{
[1,1]
[1,2]
}
Furthermore, cell elements (accessed by {}) can be passed directly to a function. The
list of elements from the cell array will be passed as an argument list to a given function
as if it is called with the elements as individual arguments. The two calls to printf in the
following example are identical but the latter is simpler and can handle cell arrays of an
arbitrary size:
c = {"GNU", "Octave", "is", "Free", "Software"};
printf ("Y%s ", c{1}, c{2}, {3}, c{4}, <{5});
- GNU Octave is Free Software
printf ("%s ", c{:});
- GNU Octave is Free Software
If used on the left-hand side of an assignment, a comma separated list generated with
{} can be assigned to. An example is

1
three

in{1} = [10, 20, 30, 40, 50, 60, 70, 80, 90];
in{2} = inf;
in{3} = "last";

in{4} = "first";
out = cell (4, 1);

[out{1:3}] = find (in{1 : 3});
[out{4:6}] = find (in{[1, 2, 41})
= out =
{
[1,1] = 1
[2,1] = 9
[3,1] = 90
(4,11 = 1
[3,1] = 1
[4,1] = 10
}

6.3.2 Comma Separated Lists Generated from Structure Arrays

Structure arrays can equally be used to create comma separated lists. This is done by
addressing one of the fields of a structure array. For example:

112 GNU Octave

x = ceil (randn (10, 1));
in = struct ("calll", {x, 3, "last"},
"call2", {x, inf, "first"});
out = struct ("calll", cell (2, 1), "call2", cell (2, 1));
[out.calll] = find (in.calll);
[out.call2] = find (in.call2);

Chapter 7: Variables 113

7 Variables

Variables let you give names to values and refer to them later. You have already seen
variables in many of the examples. The name of a variable must be a sequence of letters,
digits and underscores, but it may not begin with a digit. Octave does not enforce a limit
on the length of variable names, but it is seldom useful to have variables with names longer
than about 30 characters. The following are all valid variable names

X
x15

__foo_bar_baz__
fucnrdthsucngtagdjb

However, names like __foo_bar_baz__ that begin and end with two underscores are under-
stood to be reserved for internal use by Octave. You should not use them in code you write,
except to access Octave’s documented internal variables and built-in symbolic constants.

Case is significant in variable names. The symbols a and A are distinct variables.

A variable name is a valid expression by itself. It represents the variable’s current value.
Variables are given new values with assignment operators and increment operators. See
Section 8.6 [Assignment Expressions|, page 137.

There is one built-in variable with a special meaning. The ans variable always contains
the result of the last computation, where the output wasn’t assigned to any variable. The
code a = cos (pi) will assign the value -1 to the variable a, but will not change the value
of ans. However, the code cos (pi) will set the value of ans to -1.

Variables in Octave do not have fixed types, so it is possible to first store a numeric
value in a variable and then to later use the same name to hold a string value in the same
program. Variables may not be used before they have been given a value. Doing so results
in an error.

ans [Automatic Variable]
The most recently computed result that was not explicitly assigned to a variable. For
example, after the expression
372 + 472
is evaluated, the value returned by ans is 25.

isvarname (name) [Built-in Function]
Return true if name is a valid variable name.

See also: [iskeyword], page 761, [exist], page 120, [who|, page 118.

varname = genvarname (str) [Function File]
varname = genvarname (sStr, exclusions) [Function File]
Create unique variable(s) from str. If exclusions is given, then the variable(s) will be
unique to each other and to exclusions (exclusions may be either a string or a cellstr).
If str is a cellstr, then a unique variable is created for each cell in str.
x = 3.141;
genvarname ("x", who ())
= x1

If wanted is a cell array, genvarname will make sure the returned strings are distinct:

114 GNU Octave

genvarname ({"foo", "foo"})
=
{
[1,1] = foo
[1,2] = fool
}

Note that the result is a char array/cell array of strings, not the variables themselves.
To define a variable, eval () can be used. The following trivial example sets x to 42.

name = genvarname ("x");
eval ([name " = 42"]);
= x = 42
Also, this can be useful for creating unique struct field names.

x = struct ();
for i = 1:3
x.(genvarname ("a", fieldnames (x))) = i;
endfor
= X

Since variable names may only contain letters, digits and underscores, genvarname
replaces any sequence of disallowed characters with an underscore. Also, variables
may not begin with a digit; in this case an underscore is added before the variable
name.

Variable names beginning and ending with two underscores "__" are valid but they
are used internally by octave and should generally be avoided, therefore genvarname
will not generate such names.

genvarname will also make sure that returned names do not clash with keywords such
as "for" and "if". A number will be appended if necessary. Note, however, that this
does not include function names, such as "sin". Such names should be included in
avoid if necessary.

See also: [isvarname|, page 113, [exist], page 120, [tmpnam]|, page 233, [eval], page 141.

namelengthmax () [Function File]
Return the MATLAB compatible maximum variable name length. Octave is capable of
storing strings up to 23! —1 in length. However for MATLAB compatibility all variable,
function, and structure field names should be shorter than the length supplied by
namelengthmax. In particular variables stored to a MATLAB file format will have
their names truncated to this length.

7.1 Global Variables

A variable that has been declared global may be accessed from within a function body
without having to pass it as a formal parameter.

Chapter 7: Variables 115

A variable may be declared global using a global declaration statement. The following
statements are all global declarations.

global a

global a b

global c = 2

global d = 3 e f =5

A global variable may only be initialized once in a global statement. For example, after
executing the following code
global gvar = 1
global gvar = 2
the value of the global variable gvar is 1, not 2. Issuing a ‘clear gvar’ command does not
change the above behavior, but ‘clear all’ does.
It is necessary declare a variable as global within a function body in order to access it.
For example,
global x
function £ ()
x =1;
endfunction

f O

does not set the value of the global variable x to 1. In order to change the value of the
global